
CS 61A Structure and Interpretation of Computer Programs
Spring 2020 Midterm 1

INSTRUCTIONS

• You have 1 hour and 50 minutes to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5" × 11"
crib sheet of your own creation and the official CS 61A midterm 1 study guide.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• You may use built-in Python functions that do not require import, such as min, max, pow, len, and abs.

• You may not use lists, dictionaries, tuples, sets, or the := operator. These features have not been covered.

• You may not use example functions defined on your study guide unless a problem clearly states you can.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

http://berkeley.edu

2

1. (8 points) What Would Python Display (At least one of these is out of Scope: WWPD, HOFs, Lambda)

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but
include all output displayed before the error. If evaluation would run forever, write “Forever”. To display a
function value, write “Function”. The first two rows have been provided as examples.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have first started python3 and executed the statements on the left.

def tik(tok):
tik = lambda: tok + 1
while tok - tik() < 5:

tok = tik() + 1
if tok > 100:

return tik()
return tok

snap = lambda chat: lambda: snap(chat)
snap, chat = print, snap(2020)

def q(q):
if print(q, q):

print(q + 1)
if q:

q = q + q
if q > 0:

return q
print(q + 2)

Expression Interactive Output
pow(10, 2) 100

print(4, 5) + 1
4 5
Error

(2 pt) print(print)(2020)

(2 pt) tik(50)

(1 pt) chat(2020)

(1 pt) chat()

(2 pt) q(20)

Name: 3

2. (8 points) People’s Park (At least one of these is out of Scope: Environment Diagrams, HOFs, Lambda)
Fill in the environment diagram that results from executing the code
on the right until the entire program is finished, an error occurs, or
all frames are filled.
You may not need to use all of the spaces or frames.
Do not include frames for calls to built-in functions.
A complete answer will:

• Add all missing names and parents to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

• Cross out or erase all arrows and values that are not part of
the final diagram.

Global frame people

def people(s):
 unit = 2
 park = s(unit, t) + 1
 s = (lambda t: park)(s)
 return lambda: abs(unit)

unit, t = 1, 3
def park(t, park):
 return unit - 2
unit = people(park)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10 f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

func people(s) [parent=Global]

f4: ___________ [parent=____________]

Return Value

Global frame people

def people(s):
 unit = 2
 park = s(unit, t) + 1
 s = (lambda t: park)(t)
 return lambda: abs(unit)

unit, t = 1, 3
def park(t, park):
 return unit - 2
unit = people(park)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10 f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

func people(s) [parent=Global]

f4: ___________ [parent=____________]

Return Value

4

3. (16 points) Digit Fidget

(a) (6 pt) (All are in Scope: Control) Implement same_digits, which takes two positive integers. It returns
whether they both become the same number after replacing each sequence of a digit repeated consecutively
with only one of that digit. For example, in 12222321, the sequence 2222 would be replaced by only 2,
leaving 12321.
Restriction: You may only write combinations of the following in the blanks:
a, b, end, 10, %, if, while, and, or, ==, !=, True, False, and return. (No division allowed!)

def same_digits(a, b):
"""Return whether a and b become the same number after removing adjacent repeats.

>>> same_digits(2002200, 2202000) # Ignoring repeats, both are 2020
True
>>> same_digits(21, 12) # Digits must appear in the same order
False
>>> same_digits(12, 2212) # 12 and 212 are not the same
False
>>> same_digits(2020, 20) # 2020 and 20 are not the same
False
"""
assert a > 0 and b > 0
while a and b:

if ___:

end = a % 10

__:

a = a // 10

__:

b = b // 10

else:

__

__

Name: 5

(b) (3 pt) (All are in Scope: HOFs) Implement no_repeats, which takes a positive integer a and returns
the smallest positive integer b for which same_digits(a, b) returns True. Assume same_digits is
implemented correctly. Watch out for the assert statement in the implementation of same_digits! You
may not call set or str.

def no_repeats(a):
"""Remove repeated adjacent digits from a.

>>> no_repeats(22000200)
2020
"""
return search(__ , _______________)

def search(f, x):
while not f(x):

x += 1
return x

6

(c) (4 pt) (All are in Scope: Control) Implement unique_largest, which takes a positive integer n. It
returns whether the largest digit in n appears only once in n. You may assign values to multiple names in
an assignment statement.
You may not write call expressions or parentheses. You may not write lambda, if, max, set, and, or or.

def unique_largest(n):
"""Return whether the largest digit in n appears only once.

>>> unique_largest(132123) # 3 is largest and appears twice
False
>>> unique_largest(1321523) # 5 is largest and appears only once
True
>>> unique_largest(5)
True
"""
assert n > 0
top = 0
while n:

n, d = n // 10, n % 10

if ___:

______________________________ = ___

elif d == top:

unique = ___

return unique

Name: 7

(d) (3 pt) (All are in Scope: HOFs) Implement transitive, which takes a two-argument function p that
returns True or False. The transitive function returns whether it is the case that for every three digits
a, b, c for which p(a, b) and p(b, c) both return True, p(a, c) also returns True. A digit is an integer
between 0 and 9, inclusive.
You may not write str, [, or].

def transitive(p):
"""Return whether p is transitive over non-negative single digit integers.

>>> transitive(lambda x, y: x < y) # if a < b and b < c, then a < c
True
>>> transitive(lambda x, y: abs(x-y) == 1) # E.g., p(3, 4) and p(4, 5), but not p(3, 5)
False
"""
abc = 0
while abc < 1000:

a, b, c = abc // 100, ___, abc % 10

if p(a, b) __:

return False
abc = abc + 1

return True

8

4. (8 points) Composition

(a) (4 pt) (All are in Scope: Lambda, HOFs) Implement compose, which takes a positive integer n. It
returns a function that, when called repeatedly on n one-argument functions f1, f2, . . . , fn, returns a one-
argument function of x that returns f1(f2(. . . fn(x) . . .)). You may not call the compose1 function from
the Midterm 1 Study Guide.

def compose(n):
"""Return a function that, when called n times repeatedly on unary
functions f1, f2, ..., fn, returns a function g(x) equivalent to
f1(f2(... fn(x) ...)).

>>> add1 = lambda y: y + 1
>>> compose(3)(abs)(add1)(add1)(-4) # abs(add1(add1(-4)))
2
>>> compose(3)(add1)(add1)(abs)(-4) # add1(add1(abs(-4)))
6
>>> compose(1)(abs)(-4) # abs(-4)
4
"""
assert n > 0

if n == 1:

return __

def call(f):

def on(g):

return _____________________________(__)

return on

return call

(b) (4 pt) (All are in Scope: Lambda, HOFs) Complete the final expression below with only integers and
names so it evaluates to 2020.
from operator import add

c = lambda f: lambda x: lambda y: f(x, y)
twice = lambda z: 2 * z

compose(___________)(twice)(___________(___________)(10))(___________(pow)(10))(___________)

