CS 61A O]oject—Oriented Programming
FaH 2020 Discussion 7: October 14, 2020

| O]oject Oriented Programming

In a previous lecture, you were introduced to the programming paradigm known
as Object-Oriented Programming (OOP). OOP allows us to treat data as objects -
like we do in real life.

For example, consider the class Student. Each of you as individuals is an instance

of this class. So, a student Angela would be an instance of the class Student.

Details that all CS 61A students have, such as name, are called instance attributes.
Every student has these attributes, but their values differ from student to student.
An attribute that is shared among all instances of Student is known as a class
attribute. An example would be the students attribute; the number of students

that exist is not a property of any given student but rather of all of them.

All students are able to do homework, attend lecture, and go to office hours. When
functions belong to a specific object, they are said to be methods. In this case,

these actions would be bound methods of Student objects.
Here is a recap of what we discussed above:
e class: a template for creating objects

e instance: a single object created from a class

instance attribute: a property of an object, specific to an instance

class attribute: a property of an object, shared by all instances of a class

method: an action (function) that all instances of a class may perform

1.1

2 Object-Oriented Programming

Questions

Below we have defined the classes Professor and Student, implementing some of

what was described above. Remember that we pass the self argument implicitly to

instance methods when using dot-notation. There are more questions on the next

page.

class Student:

students = @ # this is a class attribute

def

def

__init__(self, name, staff):

self.name = name # this is an instance attribute
self.understanding = @

Student.students += 1

print("There are now", Student.students, "students")
staff.add_student(self)

visit_office_hours(self, staff):
staff.assist(self)
print("Thanks, " + staff.name)

class Professor:

def

def

__init__(self, name):
self.name = name
self.students = {}

add_student(self, student):
self.students[student.name] = student

def assist(self, student):

student.understanding += 1

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Object-Oriented Programming

What will the following lines output?

>>>
>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

callahan = Professor("Callahan")
elle = Student("Elle", callahan)

elle.visit_office_hours(callahan)

elle.visit_office_hours(Professor("Paulette"))

elle.understanding

[name for name in callahan.students]

x = Student("Vivian", Professor("Stromwell")).name

[name for name in callahan.students]

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

1.2

4 Object-Oriented Programming

In this question, we will implement a special version of a list called a MinList. A
MinList acts similarly to a list in that you can append items and pop items from it,

but it only can pop the smallest number.

Implement the class MinList such it contains the following methods:
1. append(self, item): add an element to the MinList

2. pop(self): remove and return the smallest element.

Each instance also contains an attribute size that represents how many elements
it contains. Remember to update size in append and pop!

When you initialize a MinList, it will start out with no elements.

Hint: It might be helpful to actually include a Python list as an instance attribute
for each MinList to keep track of what items we have.

class MinList:
"""A list that can only pop the smallest element """
def __init__(self):

self.items =

self.size = 0

def append(self, item):
"""Appends an item to the MinList
>>> m = MinList()
>>> m.append(4)
>>> m.append(2)
>>> m.size
2

nun

def pop(self):
""" Removes and returns the smallest item from the MinList

>>> m = MinList()

>>> m.append(4)

>>> m.append(1)

>>> m.append(5)

>>> m

1

>>> m.size

2

.pop()

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

1.3

Object-Oriented Programming 5

Tutorial:

We now want to write three different classes, Server, Client, and Email to simulate

email. Fill in the definitions below to finish the implementation! There are more

methods to fill out on the next page.

We suggest that you approach this problem by first filling out the Email class, then

fill out the register_client method of Server, then implement the Client class,

and lastly fill out the send method of the Server class.

class Email:

"""Every email object has 3 instance attributes: the

message, the sender name, and the recipient name.

def

__init__(self, msg, sender_name, recipient_name):

class Server:

"""Each Server has an instance attribute clients, which

is a dictionary that associates client names with

client objects.

nun

def

def

def

__init__(self):
self.clients = {}

send(self, email):
"""Take an email and put it in the inbox of the client
it is addressed to.

register_client(self, client, client_name):
"""Takes a client object and client_name and adds them
to the clients instance attribute.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Object-Oriented Programming

class Client:
"""Every Client has instance attributes name (which is
used for addressing emails to the client), server
(which is used to send emails out to other clients), and
inbox (a list of all emails the client has received).

def __init__(self, server, name):
self.inbox = []

def compose(self, msg, recipient_name):
"""Send an email with the given message msg to the
given recipient client.

def receive(self, email):

"""Take an email and add it to the inbox of this
client.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Object-Oriented Programming 7

2 Inheritance

Python classes can implement a useful abstraction technique known as inheritance.

To illustrate this concept, consider the following Dog and Cat classes.

class Dog():
def __init__(self, name, owner):
self.is_alive = True
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print(self.name +

n

says woof!")

class Cat():
def __init__(self, name, owner, lives=9):
self.is_alive = True
self.name = name
self.owner = owner
self.lives = lives
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print(self.name +

" says meow!")

Notice that because dogs and cats share a lot of similar qualities, there is a lot of
repeated code! To avoid redefining attributes and methods for similar classes, we
can write a single superclass from which the similar classes inherit. For example,

we can write a class called Pet and redefine Dog as a subclass of Pet:

class Pet():
def __init__(self, name, owner):
self.is_alive = True # It's alive!!!
self.name = name
self.owner = owner
def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")
def talk(self):
print(self.name)

class Dog(Pet):
def talk(self):
print(self.name +

' says woof!")

Inheritance represents a hierarchical relationship between two or more classes where
one class is a more specific version of the other, e.g. a dog is a pet. Because Dog
inherits from Pet, we didn’t have to redefine __init__or eat. However, since we want

Dog to talk in a way that is unique to dogs, we did override the talk method.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Object-Oriented Programming

Questions

2.1 Below is a skeleton for the Cat class, which inherits from the Pet class. To com-
plete the implementation, override the __init__ and talk methods and add a new
lose_life method.

Hint: You can call the __init__ method of Pet to set a cat’s name and owner.

class Cat(Pet):
def __init__(self, name, owner, lives=9):

def talk(self):
""" Print out a cat's greeting.

>>> Cat('Thomas', 'Tammy').talk()
Thomas says meow!

def lose_life(self):
"""Decrements a cat's life by 1. When lives reaches zero, 'is_alive'
becomes False. If this is called after lives has reached zero, print out
that the cat has no more lives to lose.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

2.2

Object-Oriented Programming 9

Tutorial: More cats! Fill in this implemention of a class called NoisyCat, which is
just like a normal Cat. However, NoisyCat talks a lot — twice as much as a regular
Cat! Make sure to also fill in the __repr__ method for NoisyCat, so we know how
to construct it! As a hint: You can use several string formatting methods to make
this easier.

E.g.

>>> 'filling in {3} spaces {} and {}'.format('blank', 'here', 'here')

'filling in blank spaces here and here'

class : # Fill me in!

"""A Cat that repeats things twice.
def __init__(self, name, owner, lives=9):
Is this method necessary? Why or why not?

def talk(self):
"""Talks twice as much as a regular cat.

>>> NoisyCat('Magic', 'James').talk()
Magic says meow!
Magic says meow!

nun

def __repr__(self):
"""The interpreter-readable representation of a NoisyCat

>>> muffin = NoisyCat('Muffin', 'Catherine')
>>> repr(muffin)

"NoisyCat('Muffin', 'Catherine')"

>>> muffin

NoisyCat('Muffin', 'Catherine')

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Object Oriented Programming
	Inheritance

