
CS 61A Control and Environments
Fall 2020 Discussion 1: September 2, 2020

1 Control
Control structures direct the flow of a program using logical statements. For

example, conditionals (if-elif-else) allow a program to skip sections of code, and

iteration (while), allows a program to repeat a section.

If statements
if <conditional expression>:

<suite of statements>

elif <conditional expression>:

<suite of statements>

else:

<suite of statements>

Conditional statements let programs execute different lines of code depending

on certain conditions. Let’s review the if-elif-else syntax.

Recall the following points:

• The else and elif clauses are optional, and you can have any number of elif

clauses.

• A conditional expression is an expression that evaluates to either a truthy

value (True, a non-zero integer, etc.) or a falsy value (False, 0, None, "", [],

etc.).

• Only the suite that is indented under the first if/elif whose conditional

expression evaluates to a true value will be executed.

• If none of the conditional expressions evaluate to a true value, then the

else suite is executed. There can only be one else clause in a conditional

statement!

Boolean Operators
>>> not None

True

>>> not True

False

>>> -1 and 0 and 1

0

>>> False or 9999 or 1/0

9999

Python also includes the boolean operators and, or, and not. These operators

are used to combine and manipulate boolean values.

• not returns the opposite truth value of the following expression (so not will

always return either True or False).

• and evaluates expressions in order and stops evaluating (short-circuits) once

it reaches the first false value, and then returns it. If all values evaluate to a

true value, the last value is returned.

• or short-circuits at the first true value and returns it. If all values evaluate to

a false value, the last value is returned.

2 Control and Environments

Questions
1.1 Alfonso will only wear a jacket outside if it is below 60 degrees or it is raining.

Write a function that takes in the current temperature and a boolean value telling

if it is raining and returns True if Alfonso will wear a jacket and False otherwise.

First, try solving this problem using an if statement.

def wears_jacket_with_if(temp, raining):

"""

>>> wears_jacket_with_if(90, False)

False

>>> wears_jacket_with_if(40, False)

True

>>> wears_jacket_with_if(100, True)

True

"""

Note that we’ll either return True or False based on a single condition, whose

truthiness value will also be either True or False. Knowing this, try to write this

function using a single line.

def wears_jacket(temp, raining):

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Control and Environments 3

While loops
while <conditional clause>:

<body of statements>

To repeat the same statements multiple times in a program, we can use iteration.

In Python, one way we can do this is with a while loop.

As long as <conditional clause> evaluates to a true value, <body of statements>

will continue to be executed. The conditional clause gets evaluated each time the

body finishes executing.

Questions
1.2 What is the result of evaluating the following code?

def square(x):

print("here!")

return x * x

def so_slow(num):

x = num

while x > 0:

x = x + 1

return x / 0

square(so_slow(5))

1.3 Tutorial: Write a function that returns True if a positive integer n is a prime

number and False otherwise.

A prime number n is a number that is not divisible by any numbers other than 1

and n itself. For example, 13 is prime, since it is only divisible by 1 and 13, but 14

is not, since it is divisible by 1, 2, 7, and 14.

Hint: use the % operator: x % y returns the remainder of x when divided by y.

def is_prime(n):

"""

>>> is_prime(10)

False

>>> is_prime(7)

True

"""

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Control and Environments

2 Environment Diagrams
An environment diagram is a model we use to keep track of all the variables

that have been defined and the values they are bound to. We will be using this tool

throughout the course to understand complex programs involving several different

assignments and function calls.

x = 3

def square(x):

return x ** 2

square(2)

Remember that programs are simply a set of statements, or instructions—so draw-

ing diagrams that represent these programs also involves following sets of instruc-

tions! Let’s dive in.

Assignment Statements
Assignment statements, such as x = 3, define variables in programs. To execute

one in an environment diagram, record the variable name and the value:

1. Evaluate the expression on the right side of the = sign

2. Write the variable name and the expression’s value in the current frame.

2.1 Use these rules to draw a simple diagram for the assignment statements below.

x = 10 % 4

y = x

x **= 2

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Control and Environments 5

def Statements
def statements create function objects and bind them to a name. To diagram def

statements, record the function name and bind the function object to the name.

It’s also important to write the parent frame of the function, which is where the

function is defined. Very important note: Assignments for def statements use

pointers to functions, which can have different behavior than primitive assignments.

1. Draw the function object to the right-hand-side of the frames, denoting the

intrinsic name of the function, its parameters, and the parent frame (e.g. func

square(x) [parent = Global]. 1

2. Write the function name in the current frame and draw an arrow from the

name to the function object.

2.2 Use these rules and the rules for assignment statements to draw a diagram for the

code below.

def double(x):

return x * 2

def triple(x):

return x * 3

hat = double

double = triple

1When importing functions, we still create a function object in the environment diagram, bound

to the name of the imported function. However, the parent and parameters of an imported function

is unknown so only the function’s name is included. For example, if we imported the function add,

the function object would just be add(...)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Control and Environments

Call Expressions
Call expressions, such as square(2), apply functions to arguments. When exe-

cuting call expressions, we create a new frame in our diagram to keep track of local

variables:

1. Evaluate the operator, which should evaluate to a function.

2. Evaluate the operands from left to right.

3. Draw a new frame, labelling it with the following: 2

• A unique index (f1, f2, f3, ...)

• The intrinsic name of the function, which is the name of the func-

tion object itself. For example, if the function object is func square(x)

[parent=Global], the intrinsic name is square.

• The parent frame ([parent=Global])

4. Bind the formal parameters to the argument values obtained in step 2 (e.g.

bind x to 3).

5. Evaluate the body of the function in this new frame until a return value is

obtained. Write down the return value in the frame.

If a function does not have a return value, it implicitly returns None. In that case,

the “Return value” box should contain None.

2.3 Let’s put it all together! Draw an environment diagram for the following code.

def double(x):

return x * 2

hmmm = double

wow = double(3)

hmmm(wow)

2Since we do not know how built-in functions like min(...) or imported functions like add(...)

are implemented, we do not draw a new frame when we call them, for our own sakes.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Control and Environments 7

2.4 Tutorial: Draw the environment diagram that results from executing the code

below.

def f(x):

return x

def g(x, y):

if x(y):

return not y

return y

x = 3

x = g(f, x)

f = g(f, 0)

Global frame

def people(s):
 unit = 2
 park = s(unit, t) + 1
 s = (lambda t: park)(t)
 return lambda: abs(unit)

unit, t = 1, 3
def park(t, park):
 return unit - 2
unit = people(park)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10 f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

f4: ___________ [parent=____________]

Return Value

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Control
	Environment Diagrams

