
Scheme

Announcements

Scheme

Scheme is a Dialect of Lisp

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."

- Richard Stallman, created Emacs & the first free variant of UNIX

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."

- Richard Stallman, created Emacs & the first free variant of UNIX

• "The only computer language that is beautiful."

 -Neal Stephenson, DeNero's favorite sci-fi author

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "If you don't know Lisp, you don't know what it means for a programming language to be
powerful and elegant."

- Richard Stallman, created Emacs & the first free variant of UNIX

• "The only computer language that is beautiful."

 -Neal Stephenson, DeNero's favorite sci-fi author

• "The greatest single programming language ever designed."

 -Alan Kay, co-inventor of Smalltalk and OOP (from the user interface video)

4

Scheme Expressions

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Scheme Expressions

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

Numbers are self-evaluating; symbols are bound to values

Call expressions include an operator and 0 or more operands in parentheses

(Demo)

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Special Forms

Special Forms

7

Special Forms

A combination that is not a call expression is a special form:

7

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

7

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

The symbol “pi” is bound to 3.14 in the
global frame

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

The symbol “pi” is bound to 3.14 in the
global frame

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

A procedure is created and bound to the
symbol “abs”

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

A procedure is created and bound to the
symbol “abs”

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

Special Forms

A combination that is not a call expression is a special form:

• if expression: (if <predicate> <consequent> <alternative>)

• and and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

A procedure is created and bound to the
symbol “abs”

7

Evaluation:
(1) Evaluate the

predicate expression
(2) Evaluate either
the consequent or

alternative

(Demo)

Scheme Interpreters

(Demo)

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

 (lambda (<formal-parameters>) <body>)

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the
x+y+z2 procedure

10

Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the
x+y+z2 procedure

10

12

Sierpinski's Triangle

(Demo)

More Special Forms

Cond & Begin

13

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

13

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

13

if x > 10:
 print('big')
elif x > 5:
 print('medium')
else:
 print('small')

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

13

if x > 10:
 print('big')
elif x > 5:
 print('medium')
else:
 print('small')

(cond ((> x 10) (print 'big))
 ((> x 5) (print 'medium))
 (else (print 'small)))

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

13

if x > 10:
 print('big')
elif x > 5:
 print('medium')
else:
 print('small')

(cond ((> x 10) (print 'big))
 ((> x 5) (print 'medium))
 (else (print 'small)))

(cond ((> x 10) 'big)
 ((> x 5) 'medium)
 (else 'small))

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

13

if x > 10:
 print('big')
elif x > 5:
 print('medium')
else:
 print('small')

(cond ((> x 10) (print 'big))
 ((> x 5) (print 'medium))
 (else (print 'small)))

(cond ((> x 10) 'big)
 ((> x 5) 'medium)
 (else 'small))

(print

)

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

13

if x > 10:
 print('big')
elif x > 5:
 print('medium')
else:
 print('small')

(cond ((> x 10) (print 'big))
 ((> x 5) (print 'medium))
 (else (print 'small)))

(cond ((> x 10) 'big)
 ((> x 5) 'medium)
 (else 'small))

(print

)

The begin special form combines multiple expressions into one expression

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

13

if x > 10:
 print('big')
elif x > 5:
 print('medium')
else:
 print('small')

(cond ((> x 10) (print 'big))
 ((> x 5) (print 'medium))
 (else (print 'small)))

(cond ((> x 10) 'big)
 ((> x 5) 'medium)
 (else 'small))

(print

)

The begin special form combines multiple expressions into one expression

if x > 10:
 print('big')
 print('guy')
else:
 print('small')
 print('fry')

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

13

if x > 10:
 print('big')
elif x > 5:
 print('medium')
else:
 print('small')

(cond ((> x 10) (print 'big))
 ((> x 5) (print 'medium))
 (else (print 'small)))

(cond ((> x 10) 'big)
 ((> x 5) 'medium)
 (else 'small))

(print

)

The begin special form combines multiple expressions into one expression

if x > 10:
 print('big')
 print('guy')
else:
 print('small')
 print('fry')

(cond ((> x 10) (begin (print 'big) (print 'guy)))
 (else (begin (print 'small) (print 'fry))))

Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

13

if x > 10:
 print('big')
elif x > 5:
 print('medium')
else:
 print('small')

(cond ((> x 10) (print 'big))
 ((> x 5) (print 'medium))
 (else (print 'small)))

(cond ((> x 10) 'big)
 ((> x 5) 'medium)
 (else 'small))

(print

)

The begin special form combines multiple expressions into one expression

if x > 10:
 print('big')
 print('guy')
else:
 print('small')
 print('fry')

(cond ((> x 10) (begin (print 'big) (print 'guy)))
 (else (begin (print 'small) (print 'fry))))

(if (> x 10) (begin
 (print 'big)
 (print 'guy))
 (begin
 (print 'small)
 (print 'fry)))

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

14

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

14

a = 3
b = 2 + 2
c = math.sqrt(a * a + b * b)

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

14

a = 3
b = 2 + 2
c = math.sqrt(a * a + b * b)
a and b are still bound down here

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

14

a = 3
b = 2 + 2
c = math.sqrt(a * a + b * b)

(define c (let ((a 3)
 (b (+ 2 2)))
 (sqrt (+ (* a a) (* b b)))))

a and b are still bound down here

Let Expressions

The let special form binds symbols to values temporarily; just for one expression

14

a = 3
b = 2 + 2
c = math.sqrt(a * a + b * b)

(define c (let ((a 3)
 (b (+ 2 2)))
 (sqrt (+ (* a a) (* b b)))))

a and b are still bound down here a and b are not bound down here

Lists

Scheme Lists

Scheme Lists

In the late 1950s, computer scientists used confusing names

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

(cons 2 nil) 2 nil

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

2

(cons 2 nil) 2 nil

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

2

(cons 2 nil) 2 nil

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

2

(cons 2 nil)

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)
 1

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)
 1
 > (cdr x)

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)
 1
 > (cdr x)
 (2)

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)
 1
 > (cdr x)
 (2)
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)
 1
 > (cdr x)
 (2)
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2 3 4

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)
 1
 > (cdr x)
 (2)
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2 3 4

2

Scheme Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a linked list
• car: Procedure that returns the first element of a list
• cdr: Procedure that returns the rest of a list
• nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

 >
 (1 2)
 > (define x (cons 1 (cons 2 nil))
 > x
 (1 2)
 > (car x)
 1
 > (cdr x)
 (2)
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

(Demo)

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2 3 4

2

Symbolic Programming

Symbolic Programming

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

No sign of “a” and “b” in the
resulting value

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)
 (a b c)

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)
 (a b c)
 > (car '(a b c))

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)
 (a b c)
 > (car '(a b c))
 a

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)
 (a b c)
 > (car '(a b c))
 a
 > (cdr '(a b c))

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)
 (a b c)
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

18

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > '(a b c)
 (a b c)
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Short for (quote a), (quote b):
Special form to indicate that the
expression itself is the value.

18

(Demo)

Programs as Data

A Scheme Expression is a Scheme List

20

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

20

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient

20

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

20

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

20

The built-in Scheme list data structure (which is a linked list) can represent combinations

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

20

scm> (list 'quotient 10 2)

The built-in Scheme list data structure (which is a linked list) can represent combinations

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

20

scm> (list 'quotient 10 2)
(quotient 10 2)

The built-in Scheme list data structure (which is a linked list) can represent combinations

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

20

scm> (list 'quotient 10 2)
(quotient 10 2)

The built-in Scheme list data structure (which is a linked list) can represent combinations

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

20

scm> (list 'quotient 10 2)
(quotient 10 2)

scm> (eval (list 'quotient 10 2))

The built-in Scheme list data structure (which is a linked list) can represent combinations

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

20

scm> (list 'quotient 10 2)
(quotient 10 2)

scm> (eval (list 'quotient 10 2))
5

The built-in Scheme list data structure (which is a linked list) can represent combinations

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

20

scm> (list 'quotient 10 2)
(quotient 10 2)

scm> (eval (list 'quotient 10 2))
5

The built-in Scheme list data structure (which is a linked list) can represent combinations

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

20

scm> (list 'quotient 10 2)
(quotient 10 2)

scm> (eval (list 'quotient 10 2))
5

The built-in Scheme list data structure (which is a linked list) can represent combinations

In such a language, it is straightforward to write a program that writes a program

A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be:

•Primitive expressions: 2 3.3 true + quotient
•Combinations: (quotient 10 2) (not true)

20

scm> (list 'quotient 10 2)
(quotient 10 2)

scm> (eval (list 'quotient 10 2))
5

(Demo)

The built-in Scheme list data structure (which is a linked list) can represent combinations

In such a language, it is straightforward to write a program that writes a program

Generating Code

Quasiquotation

22

Quasiquotation

There are two ways to quote an expression

22

Quasiquotation

There are two ways to quote an expression

 Quote: '(a b) => (a b)

22

Quasiquotation

There are two ways to quote an expression

 Quote: '(a b) => (a b)

 Quasiquote: `(a b) => (a b)

22

Quasiquotation

There are two ways to quote an expression

 Quote: '(a b) => (a b)

 Quasiquote: `(a b) => (a b)

They are different because parts of a quasiquoted expression can be unquoted with ,

22

Quasiquotation

There are two ways to quote an expression

 Quote: '(a b) => (a b)

 Quasiquote: `(a b) => (a b)

They are different because parts of a quasiquoted expression can be unquoted with ,

 (define b 4)

22

Quasiquotation

There are two ways to quote an expression

 Quote: '(a b) => (a b)

 Quasiquote: `(a b) => (a b)

They are different because parts of a quasiquoted expression can be unquoted with ,

 (define b 4)

 Quote: '(a ,(+ b 1)) => (a (unquote (+ b 1))

22

Quasiquotation

There are two ways to quote an expression

 Quote: '(a b) => (a b)

 Quasiquote: `(a b) => (a b)

They are different because parts of a quasiquoted expression can be unquoted with ,

 (define b 4)

 Quote: '(a ,(+ b 1)) => (a (unquote (+ b 1))

 Quasiquote: `(a ,(+ b 1)) => (a 5)

22

Quasiquotation

There are two ways to quote an expression

 Quote: '(a b) => (a b)

 Quasiquote: `(a b) => (a b)

They are different because parts of a quasiquoted expression can be unquoted with ,

 (define b 4)

 Quote: '(a ,(+ b 1)) => (a (unquote (+ b 1))

 Quasiquote: `(a ,(+ b 1)) => (a 5)

Quasiquotation is particularly convenient for generating Scheme expressions:

22

Quasiquotation

There are two ways to quote an expression

 Quote: '(a b) => (a b)

 Quasiquote: `(a b) => (a b)

They are different because parts of a quasiquoted expression can be unquoted with ,

 (define b 4)

 Quote: '(a ,(+ b 1)) => (a (unquote (+ b 1))

 Quasiquote: `(a ,(+ b 1)) => (a 5)

Quasiquotation is particularly convenient for generating Scheme expressions:

 (define (make-add-procedure n) `(lambda (d) (+ d ,n)))

22

Quasiquotation

There are two ways to quote an expression

 Quote: '(a b) => (a b)

 Quasiquote: `(a b) => (a b)

They are different because parts of a quasiquoted expression can be unquoted with ,

 (define b 4)

 Quote: '(a ,(+ b 1)) => (a (unquote (+ b 1))

 Quasiquote: `(a ,(+ b 1)) => (a 5)

Quasiquotation is particularly convenient for generating Scheme expressions:

 (define (make-add-procedure n) `(lambda (d) (+ d ,n)))

 (make-add-procedure 2) => (lambda (d) (+ d 2))

22

Example: While Statements

23

Example: While Statements

What's the sum of the squares of even numbers less than 10, starting with 2?

23

Example: While Statements

What's the sum of the squares of even numbers less than 10, starting with 2?

23

x = 2
total = 0
while x < 10:
 total = total + x * x
 x = x + 2

Example: While Statements

What's the sum of the squares of even numbers less than 10, starting with 2?

23

x = 2
total = 0
while x < 10:
 total = total + x * x
 x = x + 2

 (define (f x total)
 (if (< x 10)
 (f (+ x 2) (+ total (* x x)))
 total))

Example: While Statements

What's the sum of the squares of even numbers less than 10, starting with 2?

23

x = 2
total = 0
while x < 10:
 total = total + x * x
 x = x + 2

 (define (f x total)
 (if (< x 10)
 (f (+ x 2) (+ total (* x x)))
 total))
 (f 2 0))

Example: While Statements

What's the sum of the squares of even numbers less than 10, starting with 2?

23

x = 2
total = 0
while x < 10:
 total = total + x * x
 x = x + 2

 (define (f x total)
 (if (< x 10)
 (f (+ x 2) (+ total (* x x)))
 total))

(begin

)

 (f 2 0))

Example: While Statements

What's the sum of the squares of even numbers less than 10, starting with 2?

23

x = 2
total = 0
while x < 10:
 total = total + x * x
 x = x + 2

 (define (f x total)
 (if (< x 10)
 (f (+ x 2) (+ total (* x x)))
 total))

(begin

)

 (f 2 0))

What's the sum of the numbers whose squares are less than 50, starting with 1?

Example: While Statements

What's the sum of the squares of even numbers less than 10, starting with 2?

23

x = 2
total = 0
while x < 10:
 total = total + x * x
 x = x + 2

 (define (f x total)
 (if (< x 10)
 (f (+ x 2) (+ total (* x x)))
 total))

(begin

)

 (f 2 0))

x = 1
total = 0
while x * x < 50:
 total = total + x
 x = x + 1

What's the sum of the numbers whose squares are less than 50, starting with 1?

Example: While Statements

What's the sum of the squares of even numbers less than 10, starting with 2?

23

x = 2
total = 0
while x < 10:
 total = total + x * x
 x = x + 2

 (define (f x total)
 (if (< x 10)
 (f (+ x 2) (+ total (* x x)))
 total))

(begin

)

 (f 2 0))

x = 1
total = 0
while x * x < 50:
 total = total + x
 x = x + 1

 (define (f x total)
 (if (< (* x x) 50)
 (f (+ x 1) (+ total x))
 total))

(begin

)

 (f 1 0))

What's the sum of the numbers whose squares are less than 50, starting with 1?

Example: While Statements

What's the sum of the squares of even numbers less than 10, starting with 2?

23

x = 2
total = 0
while x < 10:
 total = total + x * x
 x = x + 2

 (define (f x total)
 (if (< x 10)
 (f (+ x 2) (+ total (* x x)))
 total))

(begin

)

 (f 2 0))

x = 1
total = 0
while x * x < 50:
 total = total + x
 x = x + 1

 (define (f x total)
 (if (< (* x x) 50)
 (f (+ x 1) (+ total x))
 total))

(begin

)

 (f 1 0))

What's the sum of the numbers whose squares are less than 50, starting with 1?

(Demo)

