
Scheme



Announcements



Scheme



Scheme is a Dialect of Lisp

What are people saying about Lisp? 

• "If you don't know Lisp, you don't know what it means for a programming language to be 
powerful and elegant."  
 
- Richard Stallman, created Emacs & the first free variant of UNIX 

• "The only computer language that is beautiful." 
 
 -Neal Stephenson, DeNero's favorite sci-fi author 

• "The greatest single programming language ever designed." 
 
 -Alan Kay, co-inventor of Smalltalk and OOP (from the user interface video)

4



Scheme Expressions

Scheme programs consist of expressions, which can be: 

•Primitive expressions: 2   3.3   true   +   quotient 
•Combinations: (quotient 10 2)   (not true)

Numbers are self-evaluating; symbols are bound to values 

Call expressions include an operator and 0 or more operands in parentheses

(Demo)

5

> (quotient 10 2) 
5 
> (quotient (+ 8 7) 5) 
3 
> (+ (* 3 
        (+ (* 2 4) 
           (+ 3 5))) 
     (+ (- 10 7) 
        6))

“quotient” names Scheme’s 
built-in integer division 
procedure (i.e., function)

Combinations can span 
multiple lines  

(spacing doesn’t matter)



Special Forms



Special Forms

A combination that is not a call expression is a special form: 

• if expression:   (if <predicate> <consequent> <alternative>) 

• and and or:      (and <e1> ... <en>), (or <e1> ... <en>) 

• Binding symbols: (define <symbol> <expression>) 

• New procedures:  (define (<symbol> <formal parameters>) <body>)

  > (define pi 3.14) 
  > (* pi 2) 
  6.28 

  > (define (abs x) 
      (if (< x 0) 
          (- x) 
          x)) 
  > (abs -3) 
  3

The symbol “pi” is bound to 3.14 in the 
global frame

A procedure is created and bound to the 
symbol “abs”

7

Evaluation:  
(1) Evaluate the 

predicate expression 
(2) Evaluate either 
the consequent or 

alternative

(Demo)



Scheme Interpreters

(Demo)



Lambda Expressions



Lambda Expressions

Lambda expressions evaluate to anonymous procedures

λ  (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

  (define (plus4 x) (+ x 4)) 

  (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

  ((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the  
x+y+z2 procedure

10

12



Sierpinski's Triangle

(Demo)



More Special Forms



Cond & Begin

The cond special form that behaves like if-elif-else statements in Python

13

if x > 10: 
    print('big') 
elif x > 5: 
    print('medium') 
else: 
    print('small')

(cond ((> x 10) (print 'big)) 
      ((> x 5)  (print 'medium)) 
      (else     (print 'small)))

(cond ((> x 10) 'big) 
      ((> x 5)  'medium) 
      (else     'small))

(print 

                          )

The begin special form combines multiple expressions into one expression

if x > 10: 
    print('big') 
    print('guy') 
else: 
    print('small') 
    print('fry')

(cond ((> x 10) (begin (print 'big)   (print 'guy))) 
      (else     (begin (print 'small) (print 'fry))))

(if (> x 10) (begin  
                (print 'big)    
                (print 'guy)) 
             (begin  
                (print 'small)  
                (print 'fry)))



Let Expressions

The let special form binds symbols to values temporarily; just for one expression

14

a = 3 
b = 2 + 2 
c = math.sqrt(a * a + b * b)

(define c (let ((a 3)  
                (b (+ 2 2))) 
               (sqrt (+ (* a a) (* b b)))))

a and b are still bound down here a and b are not bound down here



Lists



Scheme Lists

In the late 1950s, computer scientists used confusing names 
• cons: Two-argument procedure that creates a linked list 
• car:  Procedure that returns the first element of a list 
• cdr:  Procedure that returns the rest of a list 
• nil:  The empty list 

Important! Scheme lists are written in parentheses with elements separated by spaces

  > 
  (1 2)  
  > (define x (cons 1 (cons 2 nil)) 
  > x 
  (1 2) 
  > (car x) 
  1 
  > (cdr x) 
  (2) 
  > (cons 1 (cons 2 (cons 3 (cons 4 nil)))) 
  (1 2 3 4)

(Demo)

2

(cons 1             )(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2 3 4

2



Symbolic Programming



Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

  > (define a 1) 
  > (define b 2) 
  > (list a b) 
  (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the 
resulting value

  > (list 'a 'b) 
  (a b) 
  > (list 'a b) 
  (a 2)

Quotation can also be applied to combinations to form lists.

  > '(a b c) 
  (a b c) 
  > (car '(a b c)) 
  a 
  > (cdr '(a b c)) 
  (b c)

Short for (quote a), (quote b): 
Special form to indicate that the 
expression itself is the value.

18

(Demo)



Programs as Data



A Scheme Expression is a Scheme List

Scheme programs consist of expressions, which can be: 

•Primitive expressions:   2   3.3   true   +   quotient 
•Combinations:   (quotient 10 2)   (not true)

20

scm> (list 'quotient 10 2) 
(quotient 10 2) 

scm> (eval (list 'quotient 10 2)) 
5 

(Demo)

The built-in Scheme list data structure (which is a linked list) can represent combinations

In such a language, it is straightforward to write a program that writes a program



Generating Code



Quasiquotation

There are two ways to quote an expression 

  Quote:      '(a b)   =>   (a b) 

  Quasiquote: `(a b)   =>   (a b) 

They are different because parts of a quasiquoted expression can be unquoted with , 

              (define b 4) 

  Quote:      '(a ,(+ b 1))  =>   (a (unquote (+ b 1)) 

  Quasiquote: `(a ,(+ b 1))  =>   (a 5) 

Quasiquotation is particularly convenient for generating Scheme expressions: 

              (define (make-add-procedure n) `(lambda (d) (+ d ,n))) 

              (make-add-procedure 2)  => (lambda (d) (+ d 2))

22



Example: While Statements

What's the sum of the squares of even numbers less than 10, starting with 2?

23

x = 2 
total = 0 
while x < 10: 
    total = total + x * x 
    x = x + 2

  (define (f x total) 
    (if (< x 10) 
      (f (+ x 2) (+ total (* x x))) 
      total)) 
  

(begin 
   

          ) 
  
  (f 2 0)) 
  

x = 1 
total = 0 
while x * x < 50: 
    total = total + x 
    x = x + 1

  (define (f x total) 
    (if (< (* x x) 50) 
      (f (+ x 1) (+ total x)) 
      total)) 
  

(begin 
   

          ) 
  
  (f 1 0)) 
  

What's the sum of the numbers whose squares are less than 50, starting with 1?

(Demo)


