Data Examples

Announcements

Examples: Objects

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam'

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:

greeting = 'Sir'

def __init_ (self):
self.elf = Worker _

def work(self): >>> jack
return self.greeting + ', I work'

def __repr__(self):
return Bourgeoisie.greeting >>> jack.work()

>>> Worker().work()

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

>>> john.work()

jack = Worker() >>> john.elf.work(john)

john = Bourgeoisie()
jack.greeting = 'Maam’

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker: >>> Worker().work() <class Worker>

greeting = 'Sir'
def __init_ (self): greeting: 'Sir'

self.elf = Worker _
def work(self): >>> jack
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting >>> jack.work()

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

>>> john.work()

jack = Worker() >>> john.elf.work(john)

john = Bourgeoisie()
jack.greeting = 'Maam’

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam’

>>> Worker().work()

>>> jack

>>> jack.work()

>>> john.work()

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir’

<class Bourgeoisie>

greeting: 'Peon’

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam’

>>> Worker().work()

>>> jack

>>> jack.work()

>>> john.work()

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir’

4\

<class Bourgeoisie>

greeting: 'Peon’

jack <Worker>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam’

>>> Worker().work()

>>> jack

>>> jack.work()

>>> john.work()

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir’

>

<class Bourgeoisie>

greeting: 'Peon’

jack <Worker>

elf:

_/

john <Bourgeoisie

>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam’

>>> Worker().work()

>>> jack

>>> jack.work()

>>> john.work()

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir’

>

<class Bourgeoisie>

greeting: 'Peon’

jack <Worker>

elf:

_/

greeting: 'Maam’

john <Bourgeoisie

>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam’

- Worker().work()

>>> jack

>>> jack.work()

>>> john.work()

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir’

>

<class Bourgeoisie>

greeting: 'Peon’

jack <Worker>

elf:

_/

greeting: 'Maam’

john <Bourgeoisie

>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam’

- Worker().work()

>>> jack

>>> jack.work()

>>> john.work()

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir’

>

<class Bourgeoisie>

greeting: 'Peon’

jack <Worker>

elf:

_/

greeting: 'Maam’

john <Bourgeoisie

>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam’

- Worker().work()

- jack

>>> jack.work()

>>> john.work()

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir’

>

<class Bourgeoisie>

greeting: 'Peon’

jack <Worker>

elf:

_/

greeting: 'Maam’

john <Bourgeoisie

>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam’

- Worker().work()

- jack

>>> jack.work()

>>> john.work()

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir’

>

<class Bourgeoisie>

greeting: 'Peon’

jack <Worker>

elf:

_/

greeting: 'Maam’

john <Bourgeoisie

>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam’

- Worker().work()

- jack

- jack.work()

>>> john.work()

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir’

>

<class Bourgeoisie>

greeting: 'Peon’

jack <Worker>

elf:

_/

greeting: 'Maam’

john <Bourgeoisie

>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:
greeting = 'Sir'
def __init_ (self):
self.elf = Worker
def work(self):
return self.greeting + ', I work'
def __repr__(self):
return Bourgeoisie.greeting

class Bourgeoisie(Worker):
greeting = 'Peon’
def work(self):
print(Worker.work(self))
return 'I gather wealth'

jack = Worker()
john = Bourgeoisie()
jack.greeting = 'Maam’

- Worker().work()

- jack

- jack.work()

>>> john.work()

>>> john.elf.work(john)

<class Worker>

greeting: 'Sir’

>

<class Bourgeoisie>

greeting: 'Peon’

jack <Worker>

elf:

_/

greeting: 'Maam’

john <Bourgeoisie

>

elf:

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:

. L - Worker().work() <class Worker>
greeting = 'Sir'
def __init_ (self): greeting: 'Sir' ::ﬁ
self.elf = Worker 2 ck
def work(self): == Jac ..
return self.greeting + ', I work' <class Bourgeoisie>
def __repr__(self): greeting: 'Peon’
return Bourgeoisie.greeting ->> jack.work()
class Bourgeoisie(Worker): jack <Worker>
greeting = “Peon’ >> john.work() elf: _/
def work(self): _ . .
print(Worker.work(self)) greeting: 'Maam

return 'I gather wealth'

john <Bourgeoisie>

jack = Worker() >>> john.elf.work(john)

john = Bourgeoisie() elf: A//
jack.greeting = 'Maam’

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:

. L - Worker().work() <class Worker>
greeting = 'Sir'
def __init_ (self): greeting: 'Sir' ::ﬁ
self.elf = Worker 2 ck
def work(self): == Jac ..
return self.greeting + ', I work' <class Bourgeoisie>
def __repr__(self): greeting: 'Peon’
return Bourgeoisie.greeting ->> jack.work()
class Bourgeoisie(Worker): jack <Worker>
greeting = “Peon’ >> john.work() elf: _/
def work(self): _ . .
print(Worker.work(self)) greeting: 'Maam

return 'I gather wealth'

john <Bourgeoisie>

jack = Worker() >>> john.elf.work(john)

john = Bourgeoisie() elf: A//
jack.greeting = 'Maam’

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:

. L - Worker().work() <class Worker>
greeting = 'Sir'
def __init_ (self): greeting: 'Sir' ::ﬁ
self.elf = Worker 2 ck
def work(self): == Jac ..
return self.greeting + ', I work' <class Bourgeoisie>
def __repr__(self): greeting: 'Peon’
return Bourgeoisie.greeting ->> jack.work()
class Bourgeoisie(Worker): jack <Worker>
greeting = “Peon’ >> john.work() elf: _/
def work(self): _ . .
print(Worker.work(self)) greeting: 'Maam

return 'I gather wealth'

john <Bourgeoisie>

jack = Worker() >> john.elf.work(john)

john = Bourgeoisie() elf: A//
jack.greeting = 'Maam’

Land Owners

Instance attributes are found before class attributes; class attributes are inherited

class Worker:

. L - Worker().work() <class Worker>
greeting = 'Sir'
def __init_ (self): greeting: 'Sir' ::ﬁ
self.elf = Worker 2 ck
def work(self): == Jac ..
return self.greeting + ', I work' <class Bourgeoisie>
def __repr__(self): greeting: 'Peon’
return Bourgeoisie.greeting ->> jack.work()
class Bourgeoisie(Worker): jack <Worker>
greeting = “Peon’ >> john.work() elf: _/
def work(self): _ . .
print(Worker.work(self)) greeting: 'Maam

return 'I gather wealth'

john <Bourgeoisie>

jack = Worker() >> john.elf.work(john)

john = Bourgeoisie() elf: A//
jack.greeting = 'Maam’

Examples: Iterables & Iterators

Using Built-In Functions & Comprehensions

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

[-4, -3, -2, 3, 2, 4]

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

[-4, -3, -2, 3, 2, 4]
e 1 2 3 4 5

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

_41 I _2; ’ 2; 4
[3 3]D[2,4]
0 1 2 3 4 5

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

[_4; _3; _2; 3; 2; 4] D [2' 4] [1’ 2’ 3' 4’ 5]
0 1 2 3 4 5

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

(-4, -3, -2, 3, 2, 4]
’ ’ ’ ’ ’ 2, 4 [1, 2, 3, 4, 5] 0
0 1 2 3 4 5 E> [: E> o)

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

(-4, -3, -2, 3, 2, 4]
’ ’ ’ ’ ’ 2, 4 [1, 2, 3, 4, 5] 0
0 1 2 3 4 5 E> [: E> o)

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

(-4, -3, -2, 3, 2, 4]
’ ’ ’ ’ ’ 2, 4 [1, 2, 3, 4, 5] 0
0 1 2 3 4 5 E> [: E> o)

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

-4, -3, -2, 3, 2, 4]

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

(-4, -3, -2, 3, 2, 4]
’ ’ ’ ’ ’ 2, 4 [1, 2, 3, 4, 5] 0
0 1 2 3 4 5 E> [: E> o)

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

[_4; _37 _21 3; 2; 4] D 6

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

(-4, -3, -2, 3, 2, 4]
’ ’ ’ ’ ’ 2, 4 [1, 2, 3, 4, 5] 0
0 1 2 3 4 5 E> [: E> o)

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

[-4, -3, -2, 3, 2, 4] [>> 6 [-4, 3, -2, -3, 2, -4]

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

(-4, -3, -2, 3, 2, 4]
’ ’ ’ ’ ’ 2, 4 [1, 2, 3, 4, 5] 0
0 1 2 3 4 5 E> [: E> o)

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)

[-4, -3, -2, 3, 2, 4] [>> 6 [-4, 3, -2, -3, 2, -4] E> 1

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

[-4, -3, -2 3 2 4]
’ ’ ’ ’ ’ 2' 4 [1’ 2’ 3' 4’ 5]
0 1 2 3 4 5 E> [] E> o]

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)
[-4, -3, -2, 3, 2, 4] [>> 6 -4, 3, -2, -3, 2, -4] E> 1

Create a dictionary mapping each digit d to the lists of elements in s that end with d.

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

[-4, -3, -2 3 2 4]
’ ’ ’ ’ ’ 2' 4 [1’ 2’ 3' 4’ 5]
0 1 2 3 4 5 E> [] E> o]

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)
[-4, -3, -2, 3, 2, 4] [>> 6 [-4, 3, -2, -3, 2, -4] E> 1
Create a dictionary mapping each digit d to the lists of elements in s that end with d.

[5, 8, 13, 21, 34, 55, 89]

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

[-4, -3, -2 3 2 4]
’ ’ ’ ’ ’ 2' 4 [1’ 2’ 3' 4’ 5]
0 1 2 3 4 5 E> [] E> o]

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)
[-4, -3, -2, 3, 2, 4] [>> 6 [-4, 3, -2, -3, 2, -4] E> 1
Create a dictionary mapping each digit d to the lists of elements in s that end with d.

(5, 8, 13, 21, 34, 55, 89] D {1: [211, 3: [13], 4: [34], 5: [5, 551, 8: [8], 9: [89]}

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

[-4, -3, -2 3 2 4]
’ ’ ’ ’ ’ 2' 4 [1’ 2’ 3' 4’ 5]
0 1 2 3 4 5 E> [] E> o]

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)
[-4, -3, -2, 3, 2, 4] [>> 6 [-4, 3, -2, -3, 2, -4] E> 1
Create a dictionary mapping each digit d to the lists of elements in s that end with d.

(5, 8, 13, 21, 34, 55, 89] D {1: [211, 3: [13], 4: [34], 5: [5, 551, 8: [8], 9: [89]}

Does every element equal some other element in s?

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

[-4, -3, -2 3 2 4]
’ ’ ’ ’ ’ 2' 4 [1’ 2’ 3' 4’ 5]
0 1 2 3 4 5 E> [] E> o]

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)
[-4, -3, -2, 3, 2, 4] [>> 6 [-4, 3, -2, -3, 2, -4] E> 1
Create a dictionary mapping each digit d to the lists of elements in s that end with d.

(5, 8, 13, 21, 34, 55, 89] D {1: [211, 3: [13], 4: [34], 5: [5, 551, 8: [8], 9: [89]}

Does every element equal some other element in s?

(-4, -3, -2, 3, 2, 4] D False

Using Built-In Functions & Comprehensions

What are the indices of all elements in a list s that have the smallest absolute value?

[-4, -3, -2 3 2 4]
’ ’ ’ ’ ’ 2' 4 [1’ 2’ 3' 4’ 5]
0 1 2 3 4 5 E> [] E> o]

What's the largest sum of two adjacent elements in a list s? (Assume len(s) > 1)
(-4, -3, -2, 3, 2, 4] D 6 (-4, 3, -2, -3, 2, -4] D 1

Create a dictionary mapping each digit d to the lists of elements in s that end with d.
[5, 8, 13, 21, 34, 55, 89] [>> {1: [21], 3: [13], 4: [34], 5: [5, 55], 8: [8], 9: [89]}

Does every element equal some other element in s?

[-4, -3, -2, 3, 2, 4] [>> False (4, 3, 2, 3, 2, 4] [>> True

Examples: Linked Lists

Linked List Exercises

Linked List Exercises

Is a linked list s ordered from least to greatest?

Linked List Exercises

Is a linked list s ordered from least to greatest?

Linked List Exercises

Is a linked list s ordered from least to greatest?

v

v

Linked List Exercises

Is a linked list s ordered from least to greatest?

[EY
v
w
\4
1S
[EY

\ 4
I
\ 4

w

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

Linked List Exercises

Is a linked list s ordered from least to greatest?

Is a linked list s ordered

\4
S
=
v
S
\4
w

from least to greatest by absolute value (or a key function)?

=
\ 4

-3

v
SN

Linked List Exercises

Is a linked list s ordered from least to greatest?

=
v
w
\4
1S
=
v
1SN
v
w

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

=
\ 4

-3

v
SN
=
\4
N
v

-3

Linked List Exercises

Is a linked list s ordered from least to greatest?

=
v
w
\4
1S
=
v
1SN
v
w

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

=
\ 4

-3

v
SN
=
\4
N
v

-3

Create a sorted Link containing all the elements of both sorted Links s & t.

Linked List Exercises

Is a linked list s ordered from least to greatest?

=
v
w
\4
1S
=
v
1SN
v
w

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

=
\ 4

-3

v
SN
=
\4
N
v

-3

Create a sorted Link containing all the elements of both sorted Links s & t.

Linked List Exercises

Is a linked list s ordered from least to greatest?

\ 4
I
\ 4

w

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

1 » —3

v
SN
=
\4
N
v

-3

Create a sorted Link containing all the elements of both sorted Links s & t.

) 4
=
\4
HAN
) 4
(92

Linked List Exercises

Is a linked list s ordered from least to greatest?

\ 4
I
\ 4

w

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

1 » —3

v
SN
=
\4
N
v

-3

Create a sorted Link containing all the elements of both sorted Links s & t.

) 4
=
\4
HAN
) 4
(92

Do the same thing, but never call Link.

Linked List Exercises

Is a linked list s ordered from least to greatest?

\ 4
I
\ 4

w

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

1 » —3

v
SN
=
\4
N
v

-3

Create a sorted Link containing all the elements of both sorted Links s & t.

) 4
=
\4
HAN
) 4
(92

Do the same thing, but never call Link.

Linked List Exercises

Is a linked list s ordered from least to greatest?

\ 4
I
\ 4

w

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

1 » —3

v
SN
=
\4
N
v

-3

Create a sorted Link containing all the elements of both sorted Links s & t.

) 4
=
\4
HAN
) 4
(92

Do the same thing, but never call Link.

1 —— 5 1

v
B

Linked List Exercises

Is a linked list s ordered from least to greatest?

\ 4
I
\ 4

w

Is a linked list s ordered from least to greatest by absolute value (or a key function)?

1 » —3

v
SN
=
\4
N
v

-3

Create a sorted Link containing all the elements of both sorted Links s & t.

) 4
=
\4
HAN
) 4
(92

Do the same thing, but never call Link.

1| —%+ 5 1 \>(

v
B

