Efficiency

Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n :
— R return 0
fib(5) T elif n == 1:
o return 1
else:

e return fib(n-2) + fib(n-1)
fib(4) *

N
fib(2)
/ N
fib(0) fib(1)

fib(@)

fib(1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def memo(f): Keys are arguments that
cache = {} map to return values

def memoized(n):

if n not in cache:

cache[n] = f(n)
return cache[n]

return; memoized Same behavior as f,
if f is a pure function

(Demo)

Memoized Tree Recursion

. @ (Call to fib
fib(5)

@ Found in cache

O Skipped

ib(3)
/ N

:“fib(l) fib(2)

1 fib(0)
@, kel

fib(2) ™,
v/ AN

fib(e) fib(1)

Exponentiation

Exponentiation
Goal: one more multiplication lets us double the problem size

def exp(b, n):

if n==0: 1
return 1 b =

else: b-on!
return b % exp(b, n-1)

def exp_fast(b, n):

if n == 0:
return 1

elif n % 2 == 0: |

return square(exp_fast(b, n//2)) .
else: b= (bgu)Z
return b * exp_fast(b, n-1)

ifn=0
otherwise
ifn=0

if n is even

Exponentiation

Goal: one more multiplication lets us double the problem size

def exp(b, n
if n =
return 1
else:
return b * exp(b, n-1)

def exp_fast(b, n):
if n == 0:
return 1
elif n % 2 == 0:
return square(exp_fast(b, n//2))
else:
return b * exp_fast(b, n-1)

Linear time:

+ Doubling the input
doubles the time

* 1024x the input takes

1024x as much time

Logarithmic time:

+ Doubling the input
increases the time
by a constant C

* 1024x the input
increases the time
by only 10 times C

b-b""1 if nis odd
def square(x): def square(x):
return x * x (Demo) return x * x
Quadratic Time
Functions that process all pairs of values in a sequence of length n take quadratic time
def overlap(a, b): 3 5 7 6
count = @ o o o .
for item in a:
Orders of Growth for other in b:
if item == other: 0 1 0 o
count += 1
return count 0 0 0 1
overlap([3, 5, 7, 6], [4, 5, 6, 5])] 1 (] 0
(Demo)
. . Time for n+n Time for input n+l Time for input n
Exponential Time Common Orders of Growth
Tree-recursive functions can take exponential time def fib(n Exponential growth. E.g., recursive fib Cpntl) b
!) o . a-b"" =(a-b")-b
if n H Incrementing n multiplies time by a constant
_ return 0
fib(5) elif n ==
return 1
else: Quadratic growth. E.g., overlap
/ \ return fib(n-2) + fib(n-1) growth. 9., 0¥) a-(n+1)2%=(a-n*) +a-(2n+1)
£ib(3) fib(4) Incrementing n increases time by n times a constant
/ N
fib(1) fib(2) Li th. E "
inear growth. E.g., slow exp
| N £ib(2) fib(3) R a-(n+1) n)+a
1 fib(0) fib(1) / \ / \ Incrementing n increases time by a constant
0‘ ‘l fib(@) fib(1) fib(1) fib(2)
‘ ‘ ‘ Logarithmic growth. E.g., exp_fast
0 1 1 fib(0) fib(1) 9 9 ¢ P- a-In(2-n) ‘Inn)+a-n2
‘ ‘ Doubling n only increments time by a constant
0 1
Constant growth. Increasing n doesn't affect time
http://en wikiped Ki/Eile:Fihanacci. jpg
Big Theta and Big O Notation for Orders of Growth
Exponential growth. E.g., recursive fib o) o)
Incrementing n multiplies time by a constant
Quadratic growth. E.g., overlap o(n?) 0(n?)
Order of Growth Notation Incrementing n increases time by n times a constant
Linear growth. E.g., slow exp O(n) O(n)
Incrementing n increases time by a constant
Logarithmic growth. E.g., exp_fast ©(logn) O(logn)
Doubling n only increments time by a constant
Constant growth. Increasing n doesn't affect time (1) o(1)

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled
S
pace
Active environments:
+Environments for any function calls currently being evaluated
‘Parent environments of functions named in active environments
(Demo)
Fibonacci Space Consumption Fibonacci Space Consumption
. . Has an active environment
fib(s) fib(s) Can be reclaimed
/ \ / \ Hasn't vet been createc
fib(3) fib(4) fib(3) fib(4)
/ AN / AN
fib(1) fib(2) fib(1) fib(2)
‘ / N fib(2) fib(3) ‘ s N fib(2) fib(3)
1 fib(e) fib(1) v \ v AN fib(0) fib(1) V N v N
0‘ 1‘ fib(0) fib(1) fib(1) Fib(2) | | fib(0) Fib(1) fibl fib(
\ \ \ \ \ b N
0 1 1 fib(e) fib(1)

Assume we have
reached this step

o 1

