Efficiency

Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion: def fib(n):
if n ==
return 0
elif n == 1:
return 1
else:
return fib(n-2) + fib(n-1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def memo(f): Keys are arguments that
{Egéﬁé";"¥§“ map to return values

def memoized(n):
if n not in cache:
cache[n] = f(n)

ret“rniwﬁmg}?EQJ<i Same behavior as f, J

if f is a pure function

(Demo)

Memoized Tree Recursion

® Call to fib

" fib(5)

Q
=
O
@©
O
c
-—
o
c
S
o
L
@

O Skipped

" £ib(3)

" fib(3)
/
fib

fib(4)

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size

def

def

def

exp(b, n):

if n == 0: 1
return 1 = .

else: b-b""
return b x exp(b, n-1)

exp_fast(b, n):

if n ==
return 1
elif n % 2 == 0:
return square(exp_fast(b, n//2))
else: — (b%n)2
return b x exp_fast(b, n-1)

square(x):
return x *x X

ifn=0

otherwise

ifn=0
if n is even
if n is odd

(Demo)

Exponentiation

Goal: one more multiplication lets us double the problem size

def

def

def

exp(b, n):
if n == 0:

return 1
else:

return b x exp(b, n-1)

exp_fast(b, n):
if n == 0:

return 1
elif n % 2 == 0:

return square(exp_fast(b, n//2))
else:

return b x exp_fast(b, n-1)

square(x):
return x *x X

Linear time:

* Doubling the input
doubles the time

* 1024x the input takes
1024x as much time

Logarithmic time:

* Doubling the input
increases the time
by a constant C

» 1024x the input
increases the time
by only 10 times C

Orders of Growth

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

def overlap(a, b):
count = ©
for item in a:
for other in b:

if item == other: 5 0 1 0 0

count += 1
return count 6 0 0 0 1
overlap([3, 5, 7, 6], [4, 5, 6, 5]) 5 0 1 0 0

(Demo)

Exponential Time

Tree-recursive functions can take exponential time def fib(n):
if n ==
return 0
flb(5) elif n == 1:
return 1
/ \ else:
return fib(n-2) + fib(n-1)
fib(3) fib(4)
/ AN
fib(1) fib(2)
‘ / F\ fib(2) fib(3)
‘ ‘ fib(0) fib(1) fib(1) fib(2)
0 1 ‘ ‘ y \
0 1 1 fib(0) fib(1)
0 1

Time for n+n Time for input n+1

Common Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

a - b"tt = (a-

Time for

input n

b - b

n?)+a-(2n+1)

-n)+a

‘Inn)+a-1n2

Order of Growth Notation

Big Theta and Big O Notation for Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

o)

O™

Space

Space and Environments

Which environment frames do we need to keep during evaluation?
At any moment there is a set of active environments
Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:
Environments for any function calls currently being evaluated

Parent environments of functions named in active environments

(Demo)

pythontutor.com/
composingprograms. html#code=def%20f ib%28n%29%3A%0A%20%20%20%20 1 %20n%20%3D%3D%200%200 r’s20n%20%3D%3D%201%3A%0A%20%20%20%20%20%20%20%20 re tu rn%20n%0A%20%20%20%20e 1 se%3A%0A%20%20%20%20%20%20%20%20 re turn%20 f ib%28n-2%29%20%2B%20f 1b%28n-1%29%0A%20%20%20%20%20%20%20%20%0A f 1b%286%29&mode=disp lay&
origin=composingprograms.js&cumulative=false&py=3&rawInputLstISON=[]&curInstr=1

Fibonacci Space Consumption

£ib(5)
£ib(3) fib(4)
/ AN
fib(1) fib(2)

| / N\ fib(2) fib(3)
1 fib(0) fib(1) yZ N v .

| | fib(@) fib(1)| fib(1) £ib(2)

° ' | . / N

0 g 1 fib(0) £ib(1)
______ -

\ / .
S —
=

Assume we have
reached this step

Fibonacci Space Consumption

Has an active environment

fib(5) Can be reclaimed
///////////// \\\\\\\\\\\\\ Hasn't yet been created
fib(3) fib(4)
/ AN
fib(1) fib(2)
‘ . / \ fib(2) fib(3)
1 fib(0) fib(1) / \ / \
| | fib(e) (fib(1)] fib(1) fib(2)
’ ' | I Y N
0 1 1 fib(0) fib(1)
A | |

Assume we have 0 1
reached this step

