Composition

Announcements

Linked Lists

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance

first: 3

rest: .—/

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance

first: 3 first: 4

rest: .—/ rest: .—/

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance Link instance

first: 3 first: 4 first: 5

rest: .—/ rest: .—/ rest: .—/

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance Link instance Link.empty

first: 3 first: 4 first: 5

rest: .—/ rest: .—/ rest: .—/

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list}

is a pair 3,4,5
?“iiﬁkmiﬁg£gﬁég ---------- . Link instance Link instance Link.empty
first: | first: 4 first: 5
rest Oo— rest: O rest: Oo—

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list}

is a pair 3,4,5
?“iiﬁkmiﬁgfgﬁég ---------- E Link instance Link instance Link.empty
first: @ 3 | || first: 4 first: 5

rest: A .—/ rest: .—/ rest: .—/

The first (zeroth)
element is an
attribute value

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list}

is a pair 3,4,5
" Link instance i [Link instance Link instance Link.empty
first: @ 3 é ; first: 4 first: 5

The first (zeroth)
element is an
attribute value

The rest of the
elements are stored
in a linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list A class attribute represents
is a pair 3,4,5 an empty linked list
7 . ST T ST m A '._'.'.'.'.'.'.'.'.'.'.v.'.'.'.'.'.'.'.'.'.'.'.':~ """"""""""
. Link instance i Link instance Link instance {Link.empty:
first: @ 3 é ; first: 4 first: 5

The first (zeroth)
element is an
attribute value

The rest of the
elements are stored
in a linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list A class attribute represents
is a pair 3,4,5 an empty linked list
7 . ST T ST m A '._'.'.'.'.'.'.'.'.'.'.v.'.'.'.'.'.'.'.'.'.'.'.':~ """"""""""
. Link instance i Link instance Link instance {Link.empty:
first: @ 3 é ; first: 4 first: 5

The first (zeroth)
element is an
attribute value

The rest of the
elements are stored
in a linked list

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance Link instance Link.empty

first: 3 first: 4 first: 5

rest: .—/ rest: .—/ rest: .—/

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance Link instance Link.empty

first: 3 first: 4 first: 5

rest: o—/ rest: o—/ rest: o—/

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

Link instance Link instance Link instance Link.empty

2 B E

.____//—D>
Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

3,4,5
Link instance Link instance Link instance Link.empty
3 4 5

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

Link instance Link instance Link instance

3

—L "

4 5

"

Link(3, Link(4, Link(5, Link.empty)))

Linked List Structure

Link instance Link instance Link instance

3

—L "

4 5

"

Link(3, Link(4, Link(5)))

Linked List Class

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty):

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty): . .
assert rest is Link.empty oriisinstance(rest, Link):
self.first = first N ’
self.rest = rest J

Returns whether
rest is a Link

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty): . .
assert rest is Link.empty oriisinstance(rest, Link):
self.first = first N ’
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:
empty = ()

def __init__ (self, first, rest=empty): . .
assert rest is Link.empty oriisinstance(rest, Link):
self.first = first N ’
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:
------ ‘<[Some zero-length sequence]

'
'
.

def __init__ (self, first, rest=empty): . .
assert rest is Link.empty oriisinstance(rest, Link):
self.first = first N ’
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5)))

Linked List Class

Linked list class: attributes are passed to __init__

class Link:
------ ‘<[Some zero-length sequence]

'
'
.

def __init__ (self, first, rest=empty): . .
assert rest is Link.empty oriisinstance(rest, Link):
self.first = first N ’
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.
Link(3, Link(4, Link(5)))

(Demo)

Linked List Processing

Example: Range, Map, and Filter for Linked Lists

square, odd = lambda x: x * x, lambda x: x % 2 == 1
list(map(square, filter(odd, range(1, 6)))) # [1, 9, 25]
map_link(square, filter link(odd, range link(1, 6))) # Link(1, Link(9, Link(25)))

def range_link(start, end):
"""Return a Link containing consecutive integers from start to end.

>>> range_link(3, 6)
Link(3, Link(4, Link(5)))

def map_link(f, s):
"""Return a Link that contains f(x) for each x in Link s.

>>> map_link(square, range_link(3, 6))
Link(9, Link(16, Link(25)))

def filter link(f, s):
"""Return a Link that contains only the elements x of Link s for which f(x)
is a true value.

>>> filter_link(odd, range 1link(3, 6))
Link(3, Link(5))

Linked Lists Mutation

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked 1list can contain the linked 1list as a sub-1list

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked 1list can contain the linked 1list as a sub-1list

>>> s = Link(1, Link(2, Link(3)))

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked 1list can contain the linked 1list as a sub-1list

>>> s = Link(1, Link(2, Link(3)))

Global frame First |[Rest First |Rest First |Rest

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked list can contain the linked list as a sub-list

>>> g

Link(1, Link(2, Link(3)))

Global frame

S

First

Rest

First

Rest

First

V

Note: The actual

environment diagram is
much more complicated.

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked list can contain the linked list as a sub-list

>>> s = Link(1, Link(2, Link(3)))

Note: The actual
environment diagram is
much more complicated.

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked list can contain the linked list as a sub-list

>>> s = Link(1, Link(2, Link(3)))
>>> s.first = 5

Note: The actual
environment diagram is
much more complicated.

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked list can contain the linked list as a sub-list

>>> s = Link(1, Link(2, Link(3)))
>>> s.first = 5
>>> t = s.rest

Note: The actual
environment diagram is
much more complicated.

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked list can contain the linked list as a sub-list

>>> s = Link(1, Link(2, Link(3)))
>>> s,.first = 5
>>> t = s.rest
>>> t.rest = s

Note: The actual
environment diagram is
much more complicated.

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked list can contain the linked list as a sub-list

>>> s = Link(1, Link(2, Link(3)))
>>> s,first = 5

>>> t = s.rest

>>> t.rest = s

>>> g,first

Note: The actual
environment diagram is
much more complicated.

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked list can contain the linked list as a sub-list

>>> s = Link(1, Link(2, Link(3)))
>>> s,first = 5

>>> t = s.rest

>>> t.rest = s

>>> g,first

5

Note: The actual
environment diagram is
much more complicated.

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked list can contain the linked list as a sub-list

>>> s = Link(1, Link(2, Link(3)))
>>> s,first = 5

>>> t = s.rest

>>> t.rest = s

>>> g,first

5

>>> s, rest.rest.rest.rest.rest.first

Note: The actual
environment diagram is
much more complicated.

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked list can contain the linked list as a sub-list

>>> s = Link(1, Link(2, Link(3)))
>>> s,first = 5

>>> t = s.rest

>>> t.rest = s

>>> g,first

5

>>> s,rest.rest.rest.rest.rest.first
2

Note: The actual
environment diagram is
much more complicated.

Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked 1list can contain the linked 1list as a sub-1list

>>> s = Link(1, Link(2, Link(3)))
>>> s,first = 5

>>> t = s.rest

>>> t.rest = s

>>> g,first

5

>>> s, rest.rest.rest.rest.rest.first

Global frame gt Rest First |Rest)
Note: The actual

: — 3|5 | —/——|2 | —

,___-__________///» environment diagram is
¢ — much more complicated.

Linked List Mutation Example

Adding to an Ordered List

Link instance Link instance Link instance
1 3 5
S: /
H H

Adding to an Ordered List

Link instance Link instance Link instance
1 3 5
S: /
H H

def add(s, v):
"""Add v to an ordered list s with no repeats, returning modified s.

mnnn

Adding to an Ordered List

Link instance

first:

1

Link instance

rest:

o—

first:

3

Link instance

def add(s, v):

"""Add v to an ordered list s with no repeats,

rest:

h

first:

5

returning modified s.

rest:

/

nnn

(Note: If v is already in s, then don't modify s, but still return it.)

Adding to an Ordered List

Link instance

first:

1

Link instance

rest:

o—

first:

3

Link instance

def add(s, v):

"""Add v to an ordered list s with no repeats,

rest:

h

first:

5

returning modified s.

rest:

/

nnn

(Note: If v is already in s, then don't modify s, but still return it.)

add(s, 0)

Adding to an Ordered List

Link instance

first:

X o

rest:

!

v

Link instance

first:

rest:

def add(s, v):

Link instance

first:

3

rest:

—L "

—

"""Add v to an ordered list s with no repeats,

returning modified s.

Link instance

first:

5

rest:

/

nnn

(Note: If v is already in s, then don't modify s, but still return it.)

add(s, 0)

Adding to an Ordered List

Link instance

first:

X o

rest:

!

v

Link instance

first:

rest:

def add(s, v):

Link instance

first:

3

rest:

—L "

—

"""Add v to an ordered list s with no repeats,

returning modified s.

Link instance

first:

5

rest:

/

nnn

(Note: If v is already in s, then don't modify s, but still return it.)

add(s, 0)

add(s, 3)

Adding to an Ordered List

Link instance Link instance Link instance

first: X@ first: 3 first: 5

St /
rest: T r rest: o— rest: /

v

Link instance
first: 1)
rest: =
def add(s, v):

"""Add v to an ordered list s with no repeats, returning modified s.
(Note: If v is already in s, then don't modify s, but still return it.)

nnn

add(s, 0) add(s, 3) add(s, 4)

Adding to an Ordered List

Link instance Link instance Link instance
Xe ; X4
S:
— ?
Link instance Link instance
1 J/ 5
h

def add(s, v):
"""Add v to an ordered list s with no repeats...

mnnn

add(s, 0) add(s, 3) add(s, 4)

Adding to an Ordered List

Link instance

X o

Link instance

1

h

J

def add(s, v):

"""Add v to an ordered list s with no repeats...

add(s, 0) add(s, 3)

add(s, 4)

Link instance

3

H

mnnn

add(s, 6)

Link instance

)-&

!
v

Link instance

5

Adding to an Ordered List

Link instance Link instance Link instance

Xe ; X4
S:

— ?

Link instance Link instance

1 j 5

— ?

def add(s, v): Link instance

"""Add v to an ordered list s with no repeats...'""
6
add(s, 0) add(s, 3) add(s, 4) add(s, 6)

Adding to a Set Represented as an Ordered List

Link instance Link instance Link instance
Xo 3 X4
‘/,—D>

Link instance Link instance

5

Link instance

Adding to a Set Represented as an Ordered List

def add(s, v):
Link instance Link instance Link instance

Xeo 3 X 4

_gfﬂ.h

Link instance Link instance

5

Link instance

Adding to a Set Represented as an Ordered List

def add(s, v):
"""Add v to s returning modified S mmnn Link instance Link instance Link instance

' L]
Xeo 3 X 4
-‘/,—D>

Link instance Link instance

5

Link instance

Adding to a Set Represented as an Ordered List

def add(s, v): o
""YAdd v to s, returning modified s.””” Link inctance

Xo

>>> s = Link(1, Link(3, Link(5)))

Link instance

Link instance

3

[—

e

Link instance

4

Link instance

5

Link instance

Adding to a Set Represented as an Ordered List

def add(s, v):
""YAdd v to s, returning modified s.

mmnn Link instance Link instance Link instance

Xo 3)&
>>> s = Link(1, Link(3, Link(5))) 0——‘/”
>>> add(s, 0)

Link(@; Link(l; Link(3; Link(S)))) Link instance Link instance
5

Link instance

Adding to a Set Represented as an Ordered List

def add(s, v):
""UAdd v to s, returning modified s.”"”

>>> s = Link(1, Link(3, Link(5)))
>>> add(s, 0)
Link(@, Link(1, Link(3, Link(5))))
>>> add(s, 3)
Link(@, Link(1, Link(3, Link(5))))

Link instance

Xo

Link instance

B

Link instance

3

—

Link instance

4

Link instance

5

Link instance

Adding to a Set Represented as an Ordered List

def add(s, v):
"""Add v to s,

>>> s = Link(1,
>>> add(s, 0)
Link(@, Link(1,
>>> add(s, 3)
Link(@, Link(1,
>>> add(s, 4)
Link(@, Link(1,

returning modified s.”"””

Link(3,
Link(3,
Link(3,

Link(3,

Link(5)))
Link(5))))
Link(5))))

Link(4, Link(5)))))

Link instance

Xo

Link instance

B

Link instance

3

—

Link instance

4

Link instance

5

Link instance

Adding to a Set Represented as an Ordered List

def add(s, v):
nu "Add v to s return 1ng mod lf lEd S mmn Link instance Link instance Link instance
' L]

Xo 3 X4
>>> s = Link(1, Link(3, Link(5)))

—
>>> add(s, 0)
Llnk(@; Llnk(l; Llnk(3; L1nk(5)))) Link instance Link instance
Link(@, Link(1, Link(3, Link(5))))
>>> add(s, 4)
. add(S, 6) Link instance
Link(@, Link(1, Link(3, Link(4, Link(5, Link(6))

>>> add(s, 3) 1
.—
Link(@, Link(1, Link(3, Link(4, Link(5)))))

5

Adding to a Set Represented as an Ordered List

def add(s, v):
""UAdd v to s,

>>> s = Link(1,
>>> add(s, 0)
Link(@, Link(1,
>>> add(s, 3)
Link(@, Link(1,
>>> add(s, 4)
Link(@, Link(1,
>>> add(s, 6)
Link(@, Link(1,

assert s is not

returning modified s.”"””
Link(3, Link(5)))

Link(3, Link(5))))

Link(3, Link(5))))

Link(3, Link(4, Link(5)))))

Link(3, Link(4, Link(5, Link(6))

List.empty

Link instance

Link instance

first:

3

Link instance

rest:

[—

first:| X0
rest: '
Link instance
first: 1
rest: O—

first:| %4
rest: ?
Link instance
first: 5
rest: ?
Link instance
first: 6
rest:

Adding to a Set Represented as an Ordered List

def add(s, v):
""UAdd v to s,

>>> s = Link(1,
>>> add(s, 0)
Link(@, Link(1,
>>> add(s, 3)
Link(@, Link(1,
>>> add(s, 4)
Link(@, Link(1,
>>> add(s, 6)
Link(@, Link(1,

assert s is not
if s.first > v:

returning modified s.”"””
Link(3, Link(5)))

Link(3, Link(5))))

Link(3, Link(5))))

Link(3, Link(4, Link(5)))))

Link(3, Link(4, Link(5, Link(6))

List.empty

s.first, s.rest =

Link instance

Link instance

first:

3

Link instance

rest:

o—

first:| X0
rest: ?
Link instance
first: 1
rest: O—

first:| %4
rest: ?
Link instance
first: 5
rest: ?
Link instance
first: 6
rest:

Adding to a Set Represented as an Ordered List

def add(s, v):
""UAdd v to s,

>>> s = Link(1,
>>> add(s, 0)
Link(@, Link(1,
>>> add(s, 3)
Link(@, Link(1,
>>> add(s, 4)
Link(@, Link(1,
>>> add(s, 6)
Link(@, Link(1,

assert s is not
if s.first > v:

returning modified s.”"””

Link(3, Link(5))) >

Link(3, Link(5))))
Link(3, Link(5))))
Link(3, Link(4, Link(5)))))

Link(3, Link(4, Link(5, Link(6))

List.empty

s.first, s.rest =
elif s.first < v and empty(s.rest):

s.rest =

Link instance

Link instance

first:

3

rest:

o—

first:| X0
rest: ?
Link instance
first: 1
rest: O—

Link instance

first:| %4
rest: ?
Link instance
first: 5
rest: T
Link instance
first: 6
rest:

Adding to a Set Represented as an Ordered List

def add(s, v):
""YAdd v to s, returning modified s.”"”

~>> s = Link(1, Link(3, Link(5))) >

>>> add(s, 0)

Link(@, Link(1, Link(3, Link(5))))

>>> add(s, 3)

Link(@, Link(1, Link(3, Link(5))))

>>> add(s, 4)

Link(@, Link(1, Link(3, Link(4, Link(5)))))

>>> add(s, 6)

Link(®, Link(1, Link(3, Link(4, Link(5, Link(6))

assert s is not List.empty
if s.first > v:
s.first, s.rest =

Link instance

Link instance

first:

3

rest:

o—

first:| X0
rest: ?
Link instance
first: 1
rest: O—

Link instance

first:| %4
rest: ?
Link instanct
first: 5
rest: '
v

Link instance

first: 6

rest:

elif s.first < v and empty(s.rest):
s.rest =

elif s.first < v:

return s

Adding to a Set Represented as an Ordered List

def add(s, v):
""YAdd v to s, returning modified s.”"”

~>> s = Link(1, Link(3, Link(5))) >

>>> add(s, 0)

Link(@, Link(1, Link(3, Link(5))))

>>> add(s, 3)

Link(@, Link(1, Link(3, Link(5))))

>>> add(s, 4)

Link(@, Link(1, Link(3, Link(4, Link(5)))))

>>> add(s, 6)

Link(®, Link(1, Link(3, Link(4, Link(5, Link(6))

assert s is not List.empty
if s.first > v:

v
s.first, s.rest =

Link instance

Link instance

first:

3

rest:

o—

first:| X0
rest: ?
Link instance
first: 1
rest: O—

Link instance

first:| %4
rest: ?
Link instanct
first: 5
rest: '
v

Link instance

first: 6

rest:

elif s.first < v and empty(s.rest):
s.rest =

elif s.first < v:

return s

Adding to a Set Represented as an Ordered List

def add(s, v):
""YAdd v to s, returning modified s.”"”

~>> s = Link(1, Link(3, Link(5))) >

>>> add(s, 0)

Link(@, Link(1, Link(3, Link(5))))

>>> add(s, 3)

Link(@, Link(1, Link(3, Link(5))))

>>> add(s, 4)

Link(@, Link(1, Link(3, Link(4, Link(5)))))

>>> add(s, 6)

Link(®, Link(1, Link(3, Link(4, Link(5, Link(6))

assert s is not List.empty
if s.first > v:

v
s.first, s.rest =

Link instance

Link instance

first:

3

rest:

o—

first:| X0
rest: ?
Link instance
first: 1
rest: O—

Link(s.first, s.rest)

Link instance

first:| %4
rest: ?
Link instanct
first: 5
rest: '
v

Link instance

first: 6

rest:

elif s.first < v and empty(s.rest):
s.rest =

elif s.first < v:

return s

Adding to a Set Represented as an Ordered List
def add(s, v):

Link instance

first:

3

rest:

o—

"""Add v to s, returning modified s.”"”” Link HnStance
first:| X0
~>> s = Link(1, Link(3, Link(5))) et o
>>> add(s, 0) !
Link(@, Link(lp Link(3, Link(5)))) Link instance
>>> add(s, 3) first: 1
Link(@, Link(1, Link(3, Link(5))))
>>> add(s, 4) i M

Link(@, Link(1, Link(3, Link(4, Link(5)))))
>>> add(s, 6)

Link(®, Link(1, Link(3, Link(4, Link(5, Link(6))

assert s is not List.empty
if s.first > v:

v
s.first, s.rest =

Link(s.first, s.rest)

Link instance

first:| %4
rest: ?
Link in stanct
first: 5
rest: ?
v

Link instance

first: 6

rest:

elif s.first < v and empty(s.rest):

s.rest = Link(v)

elif s.first < v:

return s

Adding to a Set Represented as an Ordered List
def add(s, v):

Link instance

first:

3

"""Add v to s, returning modified s.”"”” Link instance

first:| X0
~>> s = Link(1, Link(3, Link(5))) et o
>>> add(s, 0) !

Link(@, Link(1, Link(3, Link(5))))

Link instance

rest:

o—

>>> add(s, 3)
Link(@, Link(1, Link(3, Link(5))))

first: 1

>>> add(s, 4) ==
Link(@, Link(1, Link(3, Link(4, Link(5)))))
>>> add(s, 6)

Link(®, Link(1, Link(3, Link(4, Link(5, Link(6))

assert s is not List.empty
if s.first > v:
s.first, s.rest =

’

Y Link(s.first, s.rest)

Link instance

first:| %4
rest: ?
Link instanct
first: 5
rest: '
v

Link instance

first: 6

rest:

elif s.first < v and empty(s.rest):

s.rest = Link(v)

elif s.first < v:
add(s.rest, v)

return s

Adding to a Set Represented as an Ordered List
def add(s, v):

Link instance

first:

3

"""Add v to s, returning modified s.”"”” Link instance

first:| X0
~>> s = Link(1, Link(3, Link(5))) et o
>>> add(s, 0) !

Link(@, Link(1, Link(3, Link(5))))

Link instance

rest:

o—

>>> add(s, 3)
Link(@, Link(1, Link(3, Link(5))))

first: 1

>>> add(s, 4) ==
Link(@, Link(1, Link(3, Link(4, Link(5)))))
>>> add(s, 6)

Link(®, Link(1, Link(3, Link(4, Link(5, Link(6))

assert s is not List.empty
if s.first > v:
s.first, s.rest =

’

Y Link(s.first, s.rest)

Link instance

first:| %4
rest: ?
Link instanct
first: 5
rest: '
v

Link instance

first: 6

rest:

elif s.first < v and empty(s.rest):

s.rest = Link(v)

elif s.first < v:
add(s.rest, v)

return s

Tree Class

Tree Abstraction (Review)

o,

Tree Abstraction (Review)

)
oS @

Recursive description (wooden trees): Relative description (family trees):

Tree Abstraction (Review)

)
oS @

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Tree Abstraction (Review)

Root label
Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Tree Abstraction (Review)

Root label 4@

Branch —>

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Tree Abstraction (Review)

Root label 4@

Branch —>

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Each branch is a tree

Tree Abstraction (Review)

Root label 4@

Branch —>
(also a tree)

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches

Each branch is a tree

Tree Abstraction (Review)

Root label 4@

Branch —>
(also a tree)

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches
Each branch is a tree
A tree with zero branches is called a leaf

Tree Abstraction (Review)

Root label 4@

Branch —>

(also a tree) \
| (also a tree)é @

'

'

'

.
.

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

Tree Abstraction (Review)

Root label 4@

Branch —>

(also a tree) \
| (also a tree)é @

'

'

'

.
.

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

Root label 4@

Branch —>

(also a tree) \
| (also a tree)é @

'

'

'

.
.

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

Root label 4@

Branch —>
(also a tree)

Root of a branch

OO

Recursive description (wooden trees): Relative description (family trees):

'
'
'
.
.

A tree has a root label and a list of branches
Each branch is a tree
A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

\\\‘ — Nodes
Root label <
Root of a branch
Branch —>
(also a tree) : \ § ;

OO

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

'

'

'

.
.

Each branch is a tree
A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

\\\‘ — Nodes
Root label <
Root of a branch
Branch—bé
(also a tree) : \ §
:j ; \<v

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value

A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

Root label 4@ . e 4 .

Branch —>
(also a tree)

Root of a branch

'

'

'

.
.

Recursive description (wooden trees): Relative description (family trees):
A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value

A tree with zero branches is called a leaf

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

Root label 4@ . e 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another

A tree starts at the root

Tree Abstraction (Review)
Root of the whole tree

Root label 4@ . o 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another

A tree starts at the root The top node is the root node

Tree Abstraction (Review)
Root of the whole tree or Root Node

Root label 4@ . o 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another

A tree starts at the root The top node is the root node

Tree Abstraction (Review)

or Root Node

(wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Tree Abstraction (Review)
Root of the whole tree or Root Node

Root label 4@ . o 4 .

Branch —>
(also a tree)

Root of a branch

'
'
'
.
.

Recursive description (wooden trees): Relative description (family trees):

A tree has a root label and a list of branches Each location in a tree is called a node

Each branch is a tree Each node has a label that can be any value
A tree with zero branches is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent is the sum of its children"

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def _init_ (self, label, branches=[]):

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def _init_ (self, label, branches=[]):
self.label = label

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def _init_ (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def _init_ (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree: def tree(label, branches=[]):

def __init_ (self, label, branches=[]): for branch in branches:
?glfélggiﬁ znlgegkcheS' assert is_tree(branch)
! return [label]l + list(branches)

assert isinstance(branch, Tree)

self.branches = list(branches) def label(tree):

return treel[0]
def branches(tree):
return tree[1l:]

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def _init_ (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

def fib_tree(n):

if n==0 or n==1:
return Tree(n)

else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n left.label + right.label
return Tree(fib_n, [left, right])

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)

return [label] + list(branches)
def label(tree):

return treel[0]
def branches(tree):
return tree[1l:]

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def init_ (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

def fib_tree(n):

if n==0 or n==1:
return Tree(n)

else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n left.label + right.label
return Tree(fib_n, [left, right])

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)
def label(tree):
return treel[0]
def branches(tree):
return tree[1:]
def fib_tree(n):
if n==0 orn==1:
return tree(n)
else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
return tree(fib_n, [left, rightl])

Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def init_ (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

def fib_tree(n):

if n==0 or n==1:
return Tree(n)

else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n left.label + right.label
return Tree(fib_n, [left, right])

(Demo)

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)
def label(tree):
return treel[0]
def branches(tree):
return tree[1:]
def fib_tree(n):
if n==0 orn==1:
return tree(n)
else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
return tree(fib_n, [left, rightl])

Tree Mutation

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

AN

Prune branches before
recursive processing

def prune(t, n):
"""Prune all sub-trees whose label is n."""

t.branches = [for b in t.branches if

for b in t.branches:

prune(’

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

def prune(t, n):
"""Prune all sub-trees whose label is n."""

t.branches = [b for b in t.branches if b.label !=n

for b in t.branches:

prune(’

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

def prune(t, n):
"""Prune all sub-trees whose label is n."""

t.branches = [b for b in t.branches if b.label !=n

for b in t.branches:

prune(b , n

