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Linked list class: attributes are passed to __init__

class Link:
------ ‘<[ Some zero-length sequence ]

'
'
.

def __init__ (self, first, rest=empty): . .
assert rest is Link.empty oriisinstance(rest, Link):
self.first = first N ’
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.
Link(3, Link(4, Link(5 )))

(Demo)



Linked List Processing



Example: Range, Map, and Filter for Linked Lists

square, odd = lambda x: x * x, lambda x: x % 2 == 1
list(map(square, filter(odd, range(1, 6)))) # [1, 9, 25]
map_link(square, filter link(odd, range link(1, 6))) # Link(1, Link(9, Link(25)))

def range_link(start, end):
"""Return a Link containing consecutive integers from start to end.

>>> range_link(3, 6)
Link(3, Link(4, Link(5)))

def map_link(f, s):
"""Return a Link that contains f(x) for each x in Link s.

>>> map_link(square, range_link(3, 6))
Link(9, Link(16, Link(25)))

def filter link(f, s):
"""Return a Link that contains only the elements x of Link s for which f(x)
is a true value.

>>> filter_link(odd, range 1link(3, 6))
Link(3, Link(5))
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Linked Lists Can Change

Attribute assignment statements can change first and rest attributes of a Link

The rest of a linked 1list can contain the linked 1list as a sub-1list

>>> s = Link(1, Link(2, Link(3)))
>>> s,first = 5

>>> t = s.rest

>>> t.rest = s

>>> g,first

5

>>> s, rest.rest.rest.rest.rest.first

Global frame gt Rest First |Rest )
Note: The actual

: — 3|5 | —/——|2 | —

,___-__________///» environment diagram is
¢ — much more complicated.
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elif s.first < v and empty(s.rest):

s.rest = Link(v)

elif s.first < v:
add(s.rest, v)

return s




Adding to a Set Represented as an Ordered List
def add(s, v):

Link instance

first:

3

"""Add v to s, returning modified s.”"”” Link instance

first:| X0
~>> s = Link(1, Link(3, Link(5))) et o
>>> add(s, 0) !

Link(@, Link(1, Link(3, Link(5))))

Link instance

rest:

o—

>>> add(s, 3)
Link(@, Link(1, Link(3, Link(5))))

first: 1

>>> add(s, 4) ==
Link(@, Link(1, Link(3, Link(4, Link(5)))))
>>> add(s, 6)

Link(®, Link(1, Link(3, Link(4, Link(5, Link(6))

assert s is not List.empty
if s.first > v:
s.first, s.rest =

’

Y Link(s.first, s.rest)

Link instance

first:| %4
rest: ?
Link instanct
first: 5
rest: '
v

Link instance

first: 6

rest:

elif s.first < v and empty(s.rest):

s.rest = Link(v)

elif s.first < v:
add(s.rest, v)

return s
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Tree Class

A Tree has a label and a list of branches; each branch is a Tree

class Tree:
def init_ (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

def fib_tree(n):

if n==0 or n==1:
return Tree(n)

else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n left.label + right.label
return Tree(fib_n, [left, right])

(Demo)

def tree(label, branches=[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)
def label(tree):
return treel[0]
def branches(tree):
return tree[1:]
def fib_tree(n):
if n==0 orn==1:
return tree(n)
else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
return tree(fib_n, [left, rightl])
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Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

def prune(t, n):
"""Prune all sub-trees whose label is n."""

t.branches = [ b for b in t.branches if b.label !=n

for b in t.branches:

prune( b , n




