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Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of 
the dot expression

2. <name> is matched against the instance attributes of that object; if an 
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is 
returned instead
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class <Name>(<Base Class>): 
    <suite>
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Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount
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Moral of the story: Inheritance can be complicated, so don't overuse it!


