
Inheritance

Announcements

Attributes

Methods and Functions

4

Methods and Functions

Python distinguishes between:

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1004)
2015

4

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1004)
2015

4

Function: all arguments within parentheses

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1004)
2015

4

Function: all arguments within parentheses

Method: One object before the dot and
other arguments within parentheses

Terminology: Attributes, Functions, and Methods

5

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

5

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

5

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

5

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

5

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Terminology:

5

Class 
Attributes 

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Terminology:

5

Class 
Attributes  Functions 

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Terminology:

5

Class 
Attributes  Functions 

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Terminology:

5

Class 
Attributes  Functions 

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Terminology: Python object system:

5

Class 
Attributes  Functions 

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects

Terminology: Python object system:

5

Class 
Attributes  Functions 

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects

Bound methods are also objects: a function
that has its first parameter "self" already
bound to an instance

Terminology: Python object system:

5

Class 
Attributes  Functions 

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects

Bound methods are also objects: a function
that has its first parameter "self" already
bound to an instance

Dot expressions evaluate to bound methods for
class attributes that are functions

Terminology: Python object system:

5

Class 
Attributes  Functions 

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects

Bound methods are also objects: a function
that has its first parameter "self" already
bound to an instance

Dot expressions evaluate to bound methods for
class attributes that are functions

Terminology: Python object system:

5

<instance>.<method_name>

Looking Up Attributes by Name

<expression> . <name>

6

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

6

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

6

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

6

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

6

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is
returned instead

6

Class Attributes

7

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

7

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

7

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

7

>>> tom_account = Account('Tom')

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

7

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

7

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

The interest attribute is not part of
the instance; it's part of the class!

7

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

The interest attribute is not part of
the instance; it's part of the class!

7

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

Attribute Assignment

Assignment to Attributes

9

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

9

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

9

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

9

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

9

class Account:
 interest = 0.02
 def __init__(self, holder):
 self.holder = holder
 self.balance = 0
 ...

tom_account = Account('Tom')

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

9

class Account:
 interest = 0.02
 def __init__(self, holder):
 self.holder = holder
 self.balance = 0
 ...

tom_account = Account('Tom')

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

This expression
evaluates to an

object

9

class Account:
 interest = 0.02
 def __init__(self, holder):
 self.holder = holder
 self.balance = 0
 ...

tom_account = Account('Tom')

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

This expression
evaluates to an

object

9

class Account:
 interest = 0.02
 def __init__(self, holder):
 self.holder = holder
 self.balance = 0
 ...

tom_account = Account('Tom')

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds
or modifies the
attribute named
“interest” of
tom_account

This expression
evaluates to an

object

9

class Account:
 interest = 0.02
 def __init__(self, holder):
 self.holder = holder
 self.balance = 0
 ...

tom_account = Account('Tom')

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds
or modifies the
attribute named
“interest” of
tom_account

Instance
Attribute
Assignment

:

This expression
evaluates to an

object

9

class Account:
 interest = 0.02
 def __init__(self, holder):
 self.holder = holder
 self.balance = 0
 ...

tom_account = Account('Tom')

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds
or modifies the
attribute named
“interest” of
tom_account

Instance
Attribute
Assignment

:

Account.interest = 0.04
Class
Attribute
Assignment

:

This expression
evaluates to an

object

9

class Account:
 interest = 0.02
 def __init__(self, holder):
 self.holder = holder
 self.balance = 0
 ...

tom_account = Account('Tom')

Attribute Assignment Statements

interest: 0.02
(withdraw, deposit, __init__)

Account class
attributes

10

Attribute Assignment Statements

>>> jim_account = Account('Jim')

interest: 0.02
(withdraw, deposit, __init__)

Account class
attributes

10

Attribute Assignment Statements

>>> jim_account = Account('Jim')

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

Account class
attributes

10

Instance
attributes of
jim_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

Account class
attributes

10

Instance
attributes of
jim_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

10

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Inheritance

 Inheritance

12

 Inheritance

Inheritance is a technique for relating classes together

12

 Inheritance

Inheritance is a technique for relating classes together

A common use: Two similar classes differ in their degree of specialization

12

 Inheritance

Inheritance is a technique for relating classes together

A common use: Two similar classes differ in their degree of specialization

The specialized class may have the same attributes as the general class,
along with some special-case behavior

12

 Inheritance

Inheritance is a technique for relating classes together

A common use: Two similar classes differ in their degree of specialization

The specialized class may have the same attributes as the general class,
along with some special-case behavior

12

class <Name>(<Base Class>):
 <suite>

 Inheritance

Inheritance is a technique for relating classes together

A common use: Two similar classes differ in their degree of specialization

The specialized class may have the same attributes as the general class,
along with some special-case behavior

12

class <Name>(<Base Class>):
 <suite>

Conceptually, the new subclass inherits attributes of its base class

 Inheritance

Inheritance is a technique for relating classes together

A common use: Two similar classes differ in their degree of specialization

The specialized class may have the same attributes as the general class,
along with some special-case behavior

12

class <Name>(<Base Class>):
 <suite>

Conceptually, the new subclass inherits attributes of its base class

The subclass may override certain inherited attributes

 Inheritance

Inheritance is a technique for relating classes together

A common use: Two similar classes differ in their degree of specialization

The specialized class may have the same attributes as the general class,
along with some special-case behavior

12

class <Name>(<Base Class>):
 <suite>

Conceptually, the new subclass inherits attributes of its base class

The subclass may override certain inherited attributes

Using inheritance, we implement a subclass by specifying its differences
from the the base class

Inheritance Example

A CheckingAccount is a specialized type of Account

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

13

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

13

or
 return super().withdraw(amount + self.withdraw_fee)

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

13

or
 return super().withdraw(amount + self.withdraw_fee)

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

13

Looking Up Attribute Names on Classes

Base class attributes aren't copied into subclasses!

14

Looking Up Attribute Names on Classes

To look up a name in a class:

Base class attributes aren't copied into subclasses!

14

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

Base class attributes aren't copied into subclasses!

14

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

Base class attributes aren't copied into subclasses!

14

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__

Base class attributes aren't copied into subclasses!

14

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01

Base class attributes aren't copied into subclasses!

14

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20

Base class attributes aren't copied into subclasses!

14

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Base class attributes aren't copied into subclasses!

14

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Base class attributes aren't copied into subclasses!

14

(Demo)

Object-Oriented Design

Designing for Inheritance

16

Designing for Inheritance

Don't repeat yourself; use existing implementations

16

Designing for Inheritance

Don't repeat yourself; use existing implementations

16

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01
 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

Designing for Inheritance

Don't repeat yourself; use existing implementations

Attributes that have been overridden are still accessible via class objects

16

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01
 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

Designing for Inheritance

Don't repeat yourself; use existing implementations

Attributes that have been overridden are still accessible via class objects

Attribute look-up
on base class

16

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01
 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

Designing for Inheritance

Don't repeat yourself; use existing implementations

Attributes that have been overridden are still accessible via class objects

Look up attributes on instances whenever possible

Attribute look-up
on base class

16

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01
 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

Designing for Inheritance

Don't repeat yourself; use existing implementations

Attributes that have been overridden are still accessible via class objects

Look up attributes on instances whenever possible

Attribute look-up
on base class

Preferred to CheckingAccount.withdraw_fee
to allow for specialized accounts

16

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01
 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

Inheritance and Composition

17

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor

17

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor

Inheritance is best for representing is-a relationships

17

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor

Inheritance is best for representing is-a relationships

• E.g., a checking account is a specific type of account

17

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor

Inheritance is best for representing is-a relationships

• E.g., a checking account is a specific type of account

• So, CheckingAccount inherits from Account

17

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor

Inheritance is best for representing is-a relationships

• E.g., a checking account is a specific type of account

• So, CheckingAccount inherits from Account

Composition is best for representing has-a relationships

17

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor

Inheritance is best for representing is-a relationships

• E.g., a checking account is a specific type of account

• So, CheckingAccount inherits from Account

Composition is best for representing has-a relationships

• E.g., a bank has a collection of bank accounts it manages

17

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor

Inheritance is best for representing is-a relationships

• E.g., a checking account is a specific type of account

• So, CheckingAccount inherits from Account

Composition is best for representing has-a relationships

• E.g., a bank has a collection of bank accounts it manages

• So, A bank has a list of accounts as an attribute

17

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor

Inheritance is best for representing is-a relationships

• E.g., a checking account is a specific type of account

• So, CheckingAccount inherits from Account

Composition is best for representing has-a relationships

• E.g., a bank has a collection of bank accounts it manages

• So, A bank has a list of accounts as an attribute

17

(Demo)

Attributes Lookup Practice

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

z: -1
f:

<class A>

func f(self, x)

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

z: -1
f:

<class A>

func f(self, x)

Global

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

z: -1
f:

<class A>

func f(self, x)

Global

A

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

Global

A

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

Global

A

B

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

Global

A

B

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

Global

A

B

C

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

Global

A

B

C

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

Global

A

B

C

a

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z: ...

Global

A

B

C

a

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z: ...

Global

A

B

C

a

b

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z: ...
n: 5

Global

A

B

C

a

b

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z:

<C instance>
z: 2

...
n: 5

Global

A

B

C

a

b

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z:

<C instance>
z: 2

...
n: 5

4

Global

A

B

C

a

b

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z:

<C instance>
z: 2

...
n: 5

4

True

Global

A

B

C

a

b

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z:

<C instance>
z: 2

n: 5

4

True

Global

A

B

C

a

b

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z:

<B inst>
z:

<C instance>
z: 2

n: 5

4

True

Global

A

B

C

a

b

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z:

<C inst>
z:

<B inst>
z:

<C instance>
z: 2

n: 5

4

True

Global

A

B

C

a

b

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z:

<C inst>
z:

<B inst>
z:

<C instance>
z: 2

n: 5

4

True

Global

A

B

C

a

b 1

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z:

<C inst>
z:

<B inst>
z:

<C instance>
z: 2

n: 5

4

True

False

Global

A

B

C

a

b 1

Inheritance and Attribute Lookup

class A:
 z = -1
 def f(self, x):
 return B(x-1)

class B(A):
 n = 4
 def __init__(self, y):
 if y:
 self.z = self.f(y)
 else:
 self.z = C(y+1)

class C(B):
 def f(self, x):
 return x

a = A()
b = B(1)
b.n = 5

19

>>> a.z == C.z

>>> C(2).n

Which evaluates  
to an integer?
 b.z
 b.z.z
 b.z.z.z
 b.z.z.z.z
 None of these

>>> a.z == b.z

<A instance>

z: -1
f:

<class A>

func f(self, x)

n: 4
__init__:

<class B inherits from A>

func __init__(self, y)

f:

<class C inherits from B>

func f(self, x)

<B instance>
z:

<C inst>
z:

<B inst>
z:

<C instance>
z: 2

n: 5

4

True

False

Global

A

B

C

a

b 1

Multiple Inheritance

Multiple Inheritance

21

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

21

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python

21

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python

CleverBank marketing executive has an idea:

21

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python

CleverBank marketing executive has an idea:
• Low interest rate of 1%

21

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python

CleverBank marketing executive has an idea:
• Low interest rate of 1%
• A $1 fee for withdrawals

21

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python

CleverBank marketing executive has an idea:
• Low interest rate of 1%
• A $1 fee for withdrawals
• A $2 fee for deposits

21

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python

CleverBank marketing executive has an idea:
• Low interest rate of 1%
• A $1 fee for withdrawals
• A $2 fee for deposits
• A free dollar when you open your account

21

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

A class may inherit from multiple base classes in Python

CleverBank marketing executive has an idea:
• Low interest rate of 1%
• A $1 fee for withdrawals
• A $2 fee for deposits
• A free dollar when you open your account

21

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

22

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount('John')

22

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount('John')

>>> such_a_deal.balance
1

22

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount('John')

>>> such_a_deal.balance
1

Instance attribute

22

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount('John')

>>> such_a_deal.balance
1

>>> such_a_deal.deposit(20)

19

Instance attribute

22

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount('John')

>>> such_a_deal.balance
1

>>> such_a_deal.deposit(20)

19

Instance attribute

SavingsAccount method

22

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount('John')

>>> such_a_deal.balance
1

>>> such_a_deal.deposit(20)

19
>>> such_a_deal.withdraw(5)

13

Instance attribute

SavingsAccount method

22

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount('John')

>>> such_a_deal.balance
1

>>> such_a_deal.deposit(20)

19
>>> such_a_deal.withdraw(5)

13

Instance attribute

SavingsAccount method

CheckingAccount method

22

Resolving Ambiguous Class Attribute Names

23

>>> such_a_deal = AsSeenOnTVAccount('John')

>>> such_a_deal.balance
1

>>> such_a_deal.deposit(20)

19
>>> such_a_deal.withdraw(5)

13

Instance attribute

SavingsAccount method

CheckingAccount method

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

23

>>> such_a_deal = AsSeenOnTVAccount('John')

>>> such_a_deal.balance
1

>>> such_a_deal.deposit(20)

19
>>> such_a_deal.withdraw(5)

13

Instance attribute

SavingsAccount method

CheckingAccount method

Complicated Inheritance

Biological Inheritance

25

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

Mom Dad

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

Mom Dad

You

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

Aunt Mom Dad

You

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

Aunt Mom Dad

You

Half

some_guy

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

Aunt Mom Dad

You

Half

some_guy

Half Cousin

some_other_guy

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

Aunt Mom Dad

You

Half

Half Cousin

some_other_guy

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

AuntDouble Mom Dad

You

Half

Half Cousin

some_other_guy

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

AuntDouble Mom Dad

You

Half

Half Cousin

some_other_guy

Double

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

AuntDouble Mom Dad

You

Half Double Half Uncle

Half Cousin

some_other_guy

Double

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

AuntDouble Mom Dad

You

Half Double Half Uncle

Half CousinDouble

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

AuntDouble

Quadruple

Mom Dad

You

Half Double Half Uncle

Half Cousin

Biological Inheritance

25

Grandma Grandpa GramammyGrandaddy

AuntDouble

Quadruple

Mom Dad

You

Half Double Half Uncle

Half Cousin

Moral of the story: Inheritance can be complicated, so don't overuse it!

