Mutable Functions

Announcements

Mutable Functions

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

>>> withdraw(25)

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

>>> withdraw(25)
75

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

. Argument:
;;> withdraw(25) amount to withdraw

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75

>>> withdraw(25)
50

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

~
Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75 J

N
>>> withdraW(25)<1:Second withdrawal of

50 the same amount

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

~
4 Argument:
Return value: >>> withdraw(25) amount to withdraw

remaining balance 75 J
o
N
p >>> withdraw(25) Second withdrawal of
Different 50 the same amount
J

return value!

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

~
4 Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75 J
S
~
p >>> withdraw(25) < Second withdrawal of
Different 50 the same amount
return value! -
N\ >>> withdraw(60)

"Insufficient funds'

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

~
4 Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75 J
S
~
p >>> withdraw(25) < Second withdrawal of
Different 50 the same amount
return value! -
N\ >>> withdraw(60)

"Insufficient funds'

>>> withdraw(15)
35

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

~
4 Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75 J
S
~
p >>> withdraw(25) < Second withdrawal of
Different 50 the same amount
return value! -
N\ >>> withdraw(60)

"Insufficient funds'

>>> withdraw(15) Where's this balance
35 stored?

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

-

p
Return value:
remaining balance
\
([
Different
return value!
\

J

>>> withdraw = make_withdraw(100)

~
Argument:
amount to withdraw
J

N
<iSecond withdrawal of

>>> withdraw(25)
75

>>> withdraw(25)
50

the same amount

>>> withdraw(60)
"Insufficient funds'

>>> withdraw(15) Where's this balance
35 stored?

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

-

p
Return value:
remaining balance
\
([
Different
return value!
\

J

>>> withdraw =

make_withdraw(100)<£

Within the parent frame
of the function!

|

Argument:
>>> withdraw(25)

75

<

amount to withdraw

~

J

>>> withdraw(25)
50

Second withdrawal of
the same amount

~

>>> withdraw(60)

"Insufficient funds'

>>> withdraw(15)

35 stored?

[

Where's this balance]

Persistent Local State Using Environments

Global frame func make_withdraw(balance) [parent=Global]

make_withdraw L

func withdraw(amount) [parent=fl]
withdraw L

fl: make_withdraw [parent=Global]

balance |50
withdraw

Return
value

1.8

f2: withdraw [parent=fl]

amount E
Return
value t”i

f3: withdraw [parent=f1l]

amount

Return
value

&

pythontutor. con, ograns. html#c _withdr thdr: locals20balanc i turn%20’ Insufficients20fund:
tur %20uit ithdr: _withdraw28; thdr ithdr: ithdr ithdr isplaySorigin= ingprograns. ive=truespy=3&rauInputLstJSON=[1&curInstr=0

Persistent Local State Using Environments

Global frame func make_withdraw(balance) [parent=Global]

make_withdraw L

func withdraw(amount) [parent=fl]
withdraw L

fl: make_withdraw [parent=Global]

balance Eﬁl
Wit:dtraw | The parent frame contains the balance,
ol L the local state of the withdraw function

f2: withdraw [parent=fl]

K3

amount

Return
value

ER

f3: withdraw [parent=f1l]

amount

Return
value

&

_vithdrs thd local%20balanc: i turns20" Insufficients20funds’ ! %20~
ithdr:

pythontutor. com, ograms . html#c r i
tur s20uit ithdr: _withdraw28; ithdr ithdr ithdr isplaySorigin= ingprograns. ive=truespy=3&rauInputLstJSON=[1&curInstr=0

Persistent Local State Using Environments

Global frame func make_withdraw(balance) [parent=Global]

make_withdraw L

func withdraw(amount) [parent=fl]
withdraw \

fl: make_withdraw [parent=Global]

balance @

withdraw .
The parent frame contains the balance,

|
Return . .
WMQ{ the local state of the withdraw function

f2: withdraw [parent=fl]

amount |25 Every call decreases the same balance
Ff§ﬂ2’75 by (a possibly different) amount

f3: withdraw [parent=f1l]
amount E

Return
value &“)

pythontutor. con, ograns. html#c _withdr thdr: locals20balanc i turn20’ Insufficients20funds’ 1 520~
tur %20uit ithdr: _withdraw28; ithdr ithdr: ithdr ithdr isplaySorigin= ingprograns. j s&cunulat ive=t ruepy=3&rawInputLstISON=[]&curInstr=0

Persistent Local State Using Environments

-

A1l calls to the
same function
have the same

parent

Global frame

fl:

f2:

Sk

make_withdraw L
withdraw \

func make_withdraw(balance)

make_withdraw [parent=Global]

balance
withdraw

Return
value

withdraw [parent=f1l]

amount

Return
value

withdraw [parent=fl]

amount

Return
value

50

[parent=Global]

func withdraw(amount) [parent=fl]

the local state of the withdraw function

L The parent frame contains the balance,

25 Every call decreases the same balance
’75 by (a possibly different) amount

25

s

pythontutor. com ograms. html#c

_vithdrs

thdr: local%20ba lanc
ithdr:

i
ithdr: ithdr

ithdr: _withdraws28: ithdr

isplaySorigin=

*Insufficient%20funds " ! %20~

turn20' I 5
ograms. js&cumulat ive=t rue&py=3&rawInputLstISON=[1&curInstr=0

Reminder: Local Assignment

pythontutor. con/;

def percent_difference(x, y):
difference = abs(x-y)
return 100 * difference / Xx

diff = percent_difference(40, 50)

Global frame
percent_difference |

fl: percent_difference [parent=Global]
x 40

y 50

difference 10

func percent_difference(x, y) [parent=Globall]

isplaySorigin=

ograns. j stcunulative=trueSpy=3&rawInputLstISON=[]&curInstr=4

turns20

percent_differences28x, %20y

percent_differen

Reminder: Local Assignment

def percent_difference(x, y):

| difference = absxy) Assignment binds name(s) to
return 100 * difference / x|y31ye(s) in the first frame of
diff = percent_difference(40, 50) the current environment
Global frame func percent_difference(x, y) [parent=Globall]

percent_difference |

fl: percent_difference [parent=Global]
x 40

y 50

difference 10

turn%20 ifferenc if percent_differences2840, isplaySorigin= ograns. j stcunulative=trueSpy=3&rawInputLstISON=[]&curInstr=4

pythontutor. con/ ogr percent_differences28x, %20y

Reminder: Local Assignment

def percent_difference(x, y):

| difference = absxy) Assignment binds name(s) to
return 100 * difference / x|y31ye(s) in the first frame of
diff = percent_difference(40, 50) the current environment
Global frame func percent_difference(x, y) [parent=Globall]

percent_difference |

fl: percent_difference [parent=Global]
x 40

* difference :10

turn%20 ifferenc if percent_differences2840, isplaySorigin= ograns. j stcunulative=trueSpy=3&rawInputLstISON=[]&curInstr=4

pythontutor. con/ ogr percent_differences28x, %20y

Reminder: Local Assignment

def per_cent_difference(x, y):

| difference = absxy) Assignment binds name(s) to
return 160 * difference / x | NS NS RS RIS,
diff = percent_difference(40, 50) the current environment
Global frame func percent_difference(x, y) [parent=Globall]

percent_difference

fl: percent_difference [parent=Global]
X 40

* difference 10

Execution rule for assignment statements:

turn%20 ifferenc iff percent_differences2840, isplaySorigin= ograns. j stcunulative=trueSpy=3&rawInputLstISON=[]&curInstr=4

pythontutor. con/compos ingprograms. htnl#code=def%20percent_difference%28x,%20y

Reminder: Local Assignment

def pergent_difference(x, y):

L gifference = abs0ey). Assignment binds name(s) to
return 100 * difference / x| y31ye(s) in the first frame of
diff = percent_difference(40, 50) the current environment

Global frame func percent_difference(x, y) [parent=Global]

percent_difference

fl: percent_difference [parent=Global]
X 40

* difference 10

Execution rule for assignment statements:

1. Evaluate all expressions right of =, from left to right

2. Bind the names on the left to the resulting values in the current frame

percent_differences2840, isplaySorigin= ograns. j stcunulative=trueSpy=3&rawInputLstISON=[]&curInstr=4

pythontutor. con/compos ingprograms. htnl#code=def%20percent_difference%28x,%20y eturns20 ifferenc iff

Non-Local Assignment & Persistent Local State

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

def withdraw(amount):

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):
"""Return a withdraw function with a starting balance."""
def withdraw(amount):

nonlocal balance

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance."""
def withdraw(amount):

nonlocal balance

if amount > balance:

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance."""
def withdraw(amount):

nonlocal balance

if amount > balance:

return 'Insufficient funds'

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance."""
def withdraw(amount):

nonlocal balance

if amount > balance:

return 'Insufficient funds'

balance = balance - amount

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):
"""Return a withdraw function with a starting balance."""
def withdraw(amount):
nonlocal balance
if amount > balance:
return 'Insufficient funds'
balance = balance - amount

return balance

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):
"""Return a withdraw function with a starting balance."""
def withdraw(amount):
nonlocal balance
if amount > balance:
return 'Insufficient funds'
balance = balance - amount
return balance

return withdraw

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance."""

def withdraw(amount):
Declare the name "balance" nonlocal at the top of
nonlocal balance < the body of the function in which it is re-assigned

if amount > balance:

return 'Insufficient funds'
balance = balance - amount
return balance

return withdraw

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

def withdraw(amount):
<{: Declare the name "balance" nonlocal at the top of :

nonlocal balance < the body of the function in which it is re-assigned

if amount > balance:

return 'Insufficient funds'

balance = balance - amount < p. pind balance in the first non-local

return balance frame in which it was bound previously

return withdraw

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

def withdraw(amount):
<{: Declare the name "balance" nonlocal at the top of :

nonlocal balance < the body of the function in which it is re-assigned

if amount > balance:

return 'Insufficient funds'

balance = balance - amount < p. pind balance in the first non-local

return balance frame in which it was bound previously

return withdraw

(Demo)

Non-Local Assignment

The Effect of Nonlocal Statements

nonlocal <name>

The Effect of Nonlocal Statements

nonlocal <name>

Effect: Future assignments to that name change its pre-—-existing binding in the
first non-local frame of the current environment in which that name is bound.

The Effect of Nonlocal Statements

nonlocal <name>

Effect: Future assignments to that name change its pre-existing binding in the

{first non-local framejof the current environment in which that name 1is bound.

Python Docs: an
"enclosing scope"

The Effect of Nonlocal Statements

nonlocal <name>, <name>,

Effect: Future assignments to that name change its pre-existing binding in the

{first non-local framejof the current environment in which that name 1is bound.

Python Docs: an
"enclosing scope"

The Effect of Nonlocal Statements

nonlocal <name>, <name>,

Effect: Future assignments to that name change its pre-existing binding in the

{first non-local framejof the current environment in which that name 1is bound.

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

The Effect of Nonlocal Statements

nonlocal <name>, <name>,

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

The Effect of Nonlocal Statements

nonlocal <name>

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

Names listed in a nonlocal statement must not collide with pre-existing
bindings in the local scope.

The Effect of Nonlocal Statements

nonlocal <name>, <name>,

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

The Effect of Nonlocal Statements

nonlocal <name>

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

https://docs.python.org/3/reference/simple_stmts.html#the-nonlocal-statement

The Effect of Nonlocal Statements

nonlocal <name>

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

https://docs.python.org/3/reference/simple_stmts.html#the-nonlocal-statement

http://www.python.org/dev/peps/pep—-3104/

The Many Meanings of Assignment Statements

X = 2

The Many Meanings of Assignment Statements

X = 2

Status Effect

The Many Meanings of Assignment Statements

X = 2

Status Effect

*No nonlocal statement
o''x" is not bound locally

The Many Meanings of Assignment Statements

X =2
Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in

o''x" is not bound locally the first frame of the current environment

The Many Meanings of Assignment Statements

X =2
Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
e'"x" is not bound locally the first frame of the current environment

*No nonlocal statement
o'"x" is bound locally

The Many Meanings of Assignment Statements

X =2
Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o''x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame

e''x" is bound locally of the current environment

The Many Meanings of Assignment Statements

X =2
Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o''x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
e''x" is bound locally of the current environment

enonlocal x
o''x" 1s bound in a non-local
frame

The Many Meanings of Assignment Statements

Status

*No nonlocal statement
o''x" is not bound locally

X = 2

Effect

Create a new binding from name "x" to object 2 in
the first frame of the current environment

*No nonlocal statement
o'"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current environment

enonlocal x
o''x" 1s bound in a non-local
frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which "x" is bound

The Many Meanings of Assignment Statements

X =2

Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o''x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
e''x" is bound locally of the current environment
enonlocal x Re-bind "x" to 2 in the first non-local frame of
e''x" is bound in a non-local the current environment in which "x" is bound

frame

enonlocal x

o''x" 1s not bound in a non-
local frame

The Many Meanings of Assignment Statements

X =2

Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o''x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
e''x" is bound locally of the current environment
enonlocal x Re-bind "x" to 2 in the first non-local frame of
e''x" is bound in a non-local the current environment in which "x" is bound

frame

enonlocal x

o''x" 1s not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

The Many Meanings of Assignment Statements

X =2

Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o''x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
e''x" is bound locally of the current environment
enonlocal x Re-bind "x" to 2 in the first non-local frame of
e''x" is bound in a non-local the current environment in which "x" is bound

frame

enonlocal x

o''x" 1s not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

enonlocal X

e"x" 1is bound in a
non—-local frame

e"x" also bound locally

The Many Meanings of Assignment Statements

X =2

Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o''x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
e''x" is bound locally of the current environment
enonlocal x Re-bind "x" to 2 in the first non-local frame of
e''x" is bound in a non-local the current environment in which "x" is bound

frame

enonlocal x

o''x" 1s not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

enonlocal x

*'x" is bound in a SyntaxError: name 'x' is parameter and nonlocal
non-local frame

e'"'x" also bound locally

Python Particulars

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make _withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'
balance = balance - amount
return balance
return withdraw

wd = make_withdraw(20)
wd (5)

pythontutor.com/
composingprograms.html#code=def%20make_withdraw%s28balance%29%3A%0A%20%20%20%20de f%20withd raws28amount%29%3A%0A%20%20%20%20%20%20%20%201 f%20amount%20>%20balance%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%s20 ' Insufficient%20funds ' %0A%20%20%20%20%20%20%20%20ba lance%20%3D%20balance%20—
%20amount%s0A%20%20%20%20%20%20%20%20 return%20balance%0A%20%20%20%20 return%s20withd raws0A%0Awithd raws20%3D%20make_withd raw%s2820%29%0Awithd raw%s285%29&mode=display&origin=composingprograms. js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make _withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'

_balance = balance - amount
return balance T: Local assignment J

return withdraw

wd = make_withdraw(20)
wd (5)

pythontutor.com/
composingprograms.html#code=def%20make_withdraw%s28balance%29%3A%0A%20%20%20%20de f%20withd raws28amount%29%3A%0A%20%20%20%20%20%20%20%201 f%20amount%20>%20balance%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%s20 ' Insufficient%20funds ' %0A%20%20%20%20%20%20%20%20ba lance%20%3D%20balance%20—
%20amount%s0A%20%20%20%20%20%20%20%20 return%20balance%0A%20%20%20%20 return%s20withd raws0A%0Awithd raws20%3D%20make_withd raw%s2820%29%0Awithd raw%s285%29&mode=display&origin=composingprograms. js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make _withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'

_balance = balance - amount
return balance 1: Local assignment J

return withdraw

wd = make_withdraw(20)
wd (5)

UnboundLocalError: local variable 'balance' referenced before assignment

pythontutor.com/
composingprograms.html#code=def%20make_withdraw%s28balance%29%3A%0A%20%20%20%20de f%20withd raws28amount%29%3A%0A%20%20%20%20%20%20%20%201 f%20amount%20>%20balance%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20return%s20 ' Insufficient%20funds ' %0A%20%20%20%20%20%20%20%20ba lance%20%3D%20balance%20—
%20amount%s0A%20%20%20%20%20%20%20%20 return%20balance%0A%20%20%20%20 return%s20withd raws0A%0Awithd raws20%3D%20make_withd raw%s2820%29%0Awithd raw%s285%29&mode=display&origin=composingprograms. js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

def make_withdraw_list(balance):

b = [balance]

def withdraw(amount):
if amount > b[0O]:

return 'Insufficient funds'

b[O] = b[@] - amount
return b[0]

return withdraw

withdraw = make_withdraw_1ist(100)
withdraw(25)

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

def make_withdraw_list(balance):
b = [balance]

Name bound
c def withdraw(amount):
outside of , .
withdraw def 17 amount > b[6]:
return 'Insufficient funds'

b[O] = b[@] - amount
return b[0]
return withdraw

withdraw = make_withdraw_1ist(100)
withdraw(25)

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

def make_withdraw_list(balance):
(= b = [balance]

Name bound
L def withdraw(amount):
if amount > b[0O]:

\Wlthdraw def/ return 'Insufficient funds'

e —Db[0] = b[O@] - amount
Element return b[0]
assignment return withdraw

\Fhanges a list

J
withdraw = make_withdraw_1list(100)
withdraw(25)

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame func make_withdraw_list(balance) [parent=Global]

fl:

f2:

make_withdraw_list » list

withdraw ‘ 0
\ 75

make_withdraw_list [parent=Global] \\\
func withdraw(amount) [parent=fl]

balance 100
withdraw | def make_withdraw_list(balance):
b | [Name bound [P = [batance]
Retumn | outside of def withdraw(amount):
value withdraw def 'f amount > BIOI:
: _) return 'Insufficient funds'
(——b[0] = b[O] - amount
withdraw [parent=f1] Elﬁment return b[0]
t |25 assignment return withdraw
S changes a list
Return ~ J . _ : .
value 75 withdraw = make_withdraw_1list(100)

withdraw(25)

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame func make_withdraw_list(balance) [parent=Global]

make_withdraw_list » list

withdraw » 0
\ 75

fl: make_withdraw_list [parent=Global] \
-~ Sbalance 100 func withdraw(amount) [parent=fl]
Name-value binding withdraw def make_withdraw_list(balance):
cannot change b | (Name bound = b = [balance]
because there is no » . def withdraw(amount):
nonlocal statement Returm AESeR € if amount > b[0]:
value | withdraw def , . ,
L) _ _J return 'Insufficient funds
f —Db[0] = b[O@] - amount
f2: withdraw [parent=f1] El_ement return b[0]
assignment return withdraw
amount |25 changes a list
Return |,¢ - “Withdraw = make_withdraw_list(100)
| withdraw(25)

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame func make_withdraw_list(balance) [parent=Global]

make_withdraw_list | proeeeeenns ~.

withdraw o Mutable value
’k\\\\\ 75 can change
fl: make_withdraw_list [parent=Global] \\g ------------ ;
- Sbalance 100 func withdraw(amount) [parent=fl]
Name-value binding withdraw def make_withdraw_list(balance):
cannot change b | (Name bound = b = [balance]
because there is no » . def withdraw(amount):
nonlocal statement Returm AESeR € if amount > b[0]:
value | withdraw def , . ,
L) _ _J return 'Insufficient funds
e —Db[0] = b[O@] - amount
f2: withdraw [parent=f1] El_ement return b[0]
assignment return withdraw
amount |25 changes a list
Return |5¢ - “withdraw = make_withdraw_list(100)
ez withdraw(25)

Multiple Mutable Functions

(Demo)

Referential Transparency, Lost

pythontutor. com/
fngprog

Lhtml#c etur Y etur etur
isplaysorigin= ograms. j s&cunulat ive=t rue&py=3&rawInputLstJSON=[]&curInstr=0

Referential Transparency, Lost

-Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

pythontutor. com/
o

grams. html#c

g%28y
isplaysorigin= ograms. j s&cunulat ive=t rue&py=3&rawInputLstJSON=[]&curInstr=0

Referential Transparency, Lost

-Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

tttttttttttttttt

uuuuuuuuuuuuuu

Referential Transparency, Lost

-Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

tttttttttttttttt

uuuuuuuuuuuuuu

Referential Transparency, Lost

-Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))
mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

tttttttttttttttt

uuuuuuuuuuuuuu

Referential Transparency, Lost

-Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))
mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

tttttttttttttttt

uuuuuuuuuuuuuu

Referential Transparency, Lost

-Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

tttttttttttttttt

uuuuuuuuuu

Referential Transparency, Lost

-Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

tttttttttttttttt

uuuuuuuuuuuuuu

Review Problem

