Mutable Values Announcements

Objects

e 0Objects represent information
* They consist of data and behavior, bundled together to create abstractions
* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
Objects * Object-oriented progra.mm.ing:

* A metaphor for organizing large programs

* Special syntax that can improve the composition of programs
*In Python, every value is an object

* All objects have attributes

* A lot of data manipulation happens through object methods

(Demo) * Functions do one thing; objects do many related things

Representing Strings: the ASCII Standard
American Standard Code for Information Interchange
elt” (\2) lascrr code chart
40,1,2,3,4 7,8,9
000 O[NUL [SoH[STX [ETX | EOT |ENQ [ACKBEL [BS [HT
001 | 1|DLE[DC1[DC2[DC3|DC4 [NAK [SYN|ETB [CAN [EM [SUB|ESC| FS | GS us
010 &2 [V|« [#[$ % [&[[C[)[*[+]"]- 7
EXample: Strings 011 ewm|306]|1[2])3|4[5]6([7]|8]89 B il<]|=[>]2
100 yl4e[al[B|c[p|[E[F[6c[H[T[a]k[L[m][N]O
101 ZFis|Plo[R[s[Tlulv w|[x|y[z[r[\N]T][~]-
110 “|6 alb|cldle]flo[n]ili[k[t]m[n]o
111 ©|7[p|alr|s|t]uv]|w|x|Y]|z]]| 1]F]|-|DEL
16 columns: 4 bits
* Layout was chosen to support sorting by character code
*Rows indexed 2-5 are a useful 6-bit (64 element) subset
(Demo) e Control characters were designed for transmission
(Demo)
Representing Strings: the Unicode Standard
137,994 ch, t Unicode 12.1 o | e | 2 | Wil | P o | T
Characters 1n Unicode v",lg I!kf 1’}? H}{g u‘l‘[IIIII(l‘li& HIAI
* 150 scripts (organized) o | wn | on | e | s | e | ow
| ?] i pe
* Enumeration of character properties, Iiff)I‘z ”f?ll ”B\I ”r)(”ﬁi mi'l HWJ
such as case P O R A § o
i : Yeha | sty | oy
* Supports bidirectional display order '& @* H& *”é ’ﬂﬁ 5’6 Jﬁ l}"'IJ
* A canonical name for every character “‘_Tv [| :v,ij ' *+','.'-: Mutation Operations
o] A | Wy A | 52

Lo
Ciap:

1 III

EIGHTH NOTE (Demo)

LATIN CAPITAL LETTER A

DIE FACE-6

Some Objects Can Change
[Demo]
First example in the course of an object changing state
The same object can change in value throughout the course of computation

jessica L\ -

same_person | — (/&

Unicode
character
name

All names that refer to the same object are affected by a mutation

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:1 =[]
4 s.pop()

>>> mystery(four)
>>> len(four)

2

>>> four = [1, 2, 3, 4] def another_mystery():
>>> len(four) four.pop()

4 four.pop()

>>> another_mystery() # No arguments!
>>> len(four)

Only objects of mutable types can change: lists & dictionaries 2
{Demo}
Tuples are Immutable Sequences
Immutable values are protected from mutation
>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
2 tarele | Next lecturer oaze con) 777 SRl
(1, 2, 3) chaNgERTRAICREPITIIINg ['Anything could be inside!']
The value of an expression can change because of changes in names or objects
Tuples
Ses X = 2 s> x = [1, 2]
5> X + X >>> X + X
Name change: Object mutation: 11, 2, 1, 2]
: >>> x = 3 : >>> x.append(3)
>>> X + X >>> X + X
6 1, 2, 3,1, 2, 3]
An immutable sequence may still change if it contains a mutable value as an element
>>>s = ([1, 2], 3) >>> s = ([1, 2], 3)
>>> s[o] = 4 >>> s[el[o] = 4
(Demo) ERROR >>> 5
([4, 21, 3)
Sameness and Change
+As long as we never modify objects, a compound object is just the totality of its pieces
<A rational number is just its numerator and denominator
“This view is no longer valid in the presence of change
+A compound data object has an "identity" in addition to the pieces of which it is composed
<A list is still "the same" list even if we change its contents
Mutation - Conversely, we could have two lists that happen to have the same contents, but are different
>>> a = [10] >>> a = [10]
>>>b = a >>> b = [10]
>>> a == b >>> a b
True True
>>> a.append(20) >>> b.append(20)
>>> a >>> a
[10, 20] [10]
>>> b
[10, 20]
>>>a==b
True False
Identity Operators Mutable Default Arguments are Dangerous
Identity A default argument value is part of a function value, not generated by a call

<exp@> is <expl>

evaluates to True if both <exp0> and <expl> evaluate to the same object

Equality
<exp@> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)

>>> def f(s=[1): Global frame func f(s) [parent=Global]
s.append(3) f /"

return len(s)

f1: f [parent=Global]

>>> ()

1 s

>>> f() Return |4

2 value Each time the function
>>> f() is called, s is bound
3 f2: f [parent=Global] to the same value!

s
Return |,

value
£3: f [parent=Global]

s

Return
valve |3

Lists

Lists in Environment Diagrams

Assume that before each example below
s = [2, 3]

we execute:

t =[5, 6]
Operation Example Result
append adds one s.append(t) [s - [2, 3, [5, 6]]
element to a list t=0 t-0
extend adds all s.extend(t) |s - [2, 3, 5, 6]
elements in one list [t[1] =@ t - [5 0]
to another list
addition & slicing s - (2, 3]
create new lists t - [5, 0]
containing existing a- (2,9, [5, 0l
elements b~ (3, [5, 0]

Lists in Environment Diagrams

Assume that before each example below we execute:

Lists in Environment Diagrams

Assume that before each example below

we execute:

s = [2, 3] s = [2, 3]
t =[5, 6] t =[5, 6]
Operation Example Result Global Operation Example Result
append adds one s.append(t) |s - [2, 3, [5, 6]] append adds one s.append(t) s - [2, 3, [5, 6]]
element to a list t=0 t-0 element to a list t=0 t-0
extend adds all s.extend(t) s~ [2, 3, 5, 6] extend adds all s.extend(t) s - [2, 3, 5, 6]
elements in one list |t[1] =0 t - [5, 0] elements in one list [t[1] = t- 1[50
to another list to another list
addition & slicing s - 12, 3] addition & slicing a= s - 12, 3]
create new lists t - [5, 0] create new lists b= t - [5 0]
containing existing a-[2,9, [5 0]] containing existing al1] a-[2,9, [5 0]] list
elements b~ 3, [5, 0]] elements bl1 0 |b- (3, [5 ol —
The list function s - [2, 0] The list function t = list(s) s - [2, 0]
also creates a new t- (2, 3] also creates a new siil =0 t- (2, 3]
list containing list containing
existing elements existing elements
slice assignment
replaces a slice with
new values
Lists in Environment Diagrams Lists in Environment Diagrams
Assume that before each example below we execute: Assume that before each example below we execute:
s = [2, s = [2,
t =[5, 6] t =[5, 6]
Operation Example Result Global list Operation Example Result
append adds one s.append(t) s - [2, 3, [5, 6]] pop removes & returns [t = s.pop() s - [2]
element to a list t=0 t-0 the last element t-3
extend adds all s.extend(t) |s - [2, 3, 5, 6]
- oo remove removes the t.extend(t) s - [2, 3]
ile’“e”ii n one list |t[1] =0 t- 1[5 0 first element equal |t.remove(s) |t - (6, 5, 6]
© another t1s to the argument
addition & slicing s - 12, 3] . .
create new lists t - [5, 0] slice assignment can |s[:1] = [] s - [3]
containing existing a-1[2,9, 5 0 remove elements from |t[0:2] = [1 [t - []
elements b~ [3, [5, @]l a list by assigning
[] to a slice.
The list function - [2, 0]
also creates a new t - [2, 3]
list containing
existing elements
slice assignment s- (5, 6, 2, 5, 6]
replaces a slice with t - [5, 0]
new values
Lists in Lists in Lists in Environment Diagrams
t =11, 2, 3] list
Global ° AN ya
t[1:3] = [t] 0 1
t.extend(t) t
List
0
(t] evaluates to:
1, ...1, 1, [...1
t=[[1, 21, [3, 411 Global SE

t[0].append(t[1:2]) N O

list

s

[fx, 2, [I3, 4111, [3, 411

