Tree Recursion

Announcements

Recursive Factorial

factorial (!)

ifn
n!

ifn>0
nl=nx(n-1)x (n-2) x ..xl

factorial(n): factorial(5)
fact =1
i=1

factorial (!)

base case

ifn>0 recursive case
nt=nx (n-1)!

n * factorial(n-1)

factorial(3)

Order of Recursive Calls

The Cascade Function

(Demo)
def cascade(n): Global frame
if n < 10: cascade
print(n)
else: f1: cascade [parent=Globall
print(n) n 123
cascade(n//10)
= RIanE(n) f2: cascade [parent=Globall
n 12

cascade(123)
Return |\ooo
value

Program output:

cascade [parent=Global]
n1

Return

None
value

func cascade(n) [parent=Global]

“Each cascade frame is from a

different call to cascade.

+Until the Return value appears,

that call has not completed.

<Any statement can appear before

or after the recursive call.

Two Definitions of Cascade

(Demo)
def cascade(n): def cascade(n):

if n < 10: print(n)
print(n) if n >= 10:

else: cascade(n//10)
print(n) print(n)
cascade(n//10)
print(n)

If two implementations are equally clear, then shorter is usually better
In this case, the longer implementation is more clear (at least to me)
+ When learning to write recursive functions, put the base cases first

Both are recursive functions, even though only the first has typical structure

Example: Inverse Cascade

Inverse Cascade

Write a function that prints an inverse cascade:

1 def inverse_cascade(n):
12 grow(n)
ety
1234 shrink(n
i§3 def f_then_g(f, g, n):
if n:
1 f(n)
g(n)
grow = lambda n: f_then_g()
shrink = lambda n: f_then_g()

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

n: o,1,2,3,4,5,6, 7, 8, . 35

fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21, wee 9,227,465

def fib(n):
if n == 0:

return fib(n-2) + fib(n-1)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

4 ®.
ifib(1) fib(2)

fib(0)

(Demo)

fib(4)

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

fib(5)
fib(3) fib(4)
s AN
fib(1) fib(2)
| _/ N fib(2) ib(3)
1 fib(o) fib(1) Vs N Y N
| fib(0) fib(1) fib(1) fib(2)
¢ ! \ \ I
[1 1 fib(e) fib(1)
[} 1

(We will speed up this computation dramatically in a few weeks by remembering results)

Towers of Hanoi
move disk from post | to post 2

Example: Towers of Hanoi

[Towers of Hanoi
move disk from post | to post 2

Towers of Hanoi
n = |:move disk from post | to post 2

move_disk(disk_number, from_peg, t):
love disk " + str(disk_number) + " from peg " \
+ str(to_peg) +

0):
+ " from peg

move_disk(disk_number, from_peg, to.
print("Move disk " + str(disk_nunber)
+ str(to_peg) +

+ str(fron_peg) + " to peg

solve_hanoi(n, start_peg, end_peg)

n
move_disk(n, start_peg, end_peg)

print(”
+ str(from_peg) + " to peg

solve_hanoi(n, start_peg, end_peg)
n

-1
move_disk(n, start_peg, end_peg)

spare_peg = 6 - start_peg - end_peg
solve_hanoi(n - 1, start_peg, spare_peg)
move_disk(n, start_peg, end_peg)

s eq, end_peg)

solve_hanoi(n - 1,

solve_hanoi(n, start_peg, end_peg):

1,

move_disk(n, start_|
olve_hanoi(n

peg, end_peg)
spare_peg, end_peg)

3,1,2)

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

2+4=6 oe
1+1+4=6 [)
3+3=6 []
1+2+3=6 []
1+1+1+3=6 []
2+2+42=6 []
1+1+2+2=6 []
1+1+1+1+2=6 [)
1+1+1+1+1+1=6 [)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in non-
decreasing order.

count_partitions(6, 4)

+Recursive decomposition: finding

simpler instances of the problem. T
<Explore two possibilities: ,.'
-Use at least one 4 ,/'
-Don't use any 4 S

-Solve two simpler problems: ’.'
-count_partitions(2, 4) --- S
- count_partitions(6, 3)

<Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

-Recursive decomposition: finding def count_partitions(n, m):

simpler instances of the problem. if n == 0:
return 1
<Explore two possibilities: elif n < 0:
“Use at least one 4 _ return 0
elif m == 0:
“Don't use any 4 return @
+Solve two simpler problems: else:

» with_m = count_partitions(n-m, m)
» without_m = count_partitions(n, m-1)
return with_m + without_m

- count_partitions(2, 4)
- count_partitions(6, 3) -

-Tree recursion often involves
exploring different choices.
(Demo)

