Recursion

Announcements

Recursive Functions

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself,
either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Drawing Hands, by M. C. Escher (lithograph, 1948)

Digit Sums
2+0+1+9 = 12

«If a number a is divisible by 9, then sum_digits(a) is also divisible by 9

*Useful for typo detection!

The Bank of 61A & N

i A checksum digit is a

1234 5678 9098 7658} function of all the other
i digits; It can be

computed to detect typos
S J

OSKI THE BEAR

Credit cards actually use the Luhn algorithm, which we'll implement after sum_digits

The Problem Within the Problem

The sum of the digits of 6 is 6.
Likewise for any one-digit (non-negative) number (i.e., < 10).

The sum of the digits of 2019 is

201 9

N\

Sum of these digits + This digit

That is, we can break the problem of summing the digits of 2019 into a smaller instance of
the same problem, plus some extra stuff.

We call this recursion

Sum Digits Without a While Statement

def split(n):
""MSplit positive n into all but its last digit and its last digit."""

return n // 10, n % 10

def sum_digits(n):
"""Return the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all_but_last, last = split(n)

return sum_digits(all_but_last) + last

The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
-Base cases are evaluated without recursive calls

-Recursive cases are evaluated with recursive calls

def sum_digits(n):

"""Return the sum of the digits of positive integer n."""
if n < 10:

return n
else:

all_but_last, last = split(n)

return sum_digits(all_but_last) + last

(Demo)

Recursion in Environment Diagrams

Recursion in Environment Diagrams

def fact(n):
— if n == 0:
return 1
else:
return n * fact(n-1)

(9]
—+

fact(3)

-The same function fact is called
multiple times

Different frames keep track of the
different arguments in each call

What n evaluates to depends upon
the current environment

Each call to fact solves a simpler
problem than the last: smaller n

(Demo)

Global frame

fl:

f2:

f3:

4.

fact

fact

fact

fact

fact

[parent=Global]
n 3

[parent=Global]
n 2

[parent=Global]
n 1

[parent=Global]

;n 0

Return 1
value

func fact(n)

http://pythontutor. com,

ySorigin=conposingprograns. j s&py=3&rawInputLstISON=%:5B%5D

[parent=Global]

Iteration vs Recursion
Iteration is a special case of recursion
41 =4-3-2-1=24

Using while: Using recursion:

def fact(n):

def fact_iter(n):
total, k =1, 1 if n == 0:
while k <= n: return 1
total, k = total*k, k+1 else:
return total return n * fact(n-1)
- 1 if n =0
. I = | =
Math: " H g " {n (n —1)! otherwise

n, fact

Names: n, total, k, fact iter

Verifying Recursive Functions

The Recursive Leap of Faith

def fact(n):
if n ==
return 1
else:
return n * fact(n-1)

Is fact implemented correctly?

1. Verify the base case

2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct

4. \Verify that fact(n) is correct

Photo by Kevin Lee, Preikestolen, Norway

Mutual Recursion

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia:
- First: From the rightmost digit, which is the check digit, moving left, double the value

of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 x
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 =1, 14: 1 + 4 = 5)

- Second: Take the sum of all the digits

2 3 1+6=7 7 8 3 = 30

The Luhn sum of a valid credit card number is a multiple of 10 (Demo)

Recursion and lteration

Converting Recursion to lteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

def sum_digits(n):

"""“"Return the sum of the digits of positive integer n."""
if n < 10:

return n

else:

all_but_last, last = split(n)

returni;um_dlgltsQall_but_lastﬂ + last;<[A partial sum J

(Demo)

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def

def

sum_digits_iter(n):
digit_sum = 0

'n, last = split(n)

‘digit_sum = digit_sum + 1astj<[Updates via assignment become... J

. N

sum_digits_rec(n, digit_sum):

if n ==

return digit_sum
else:

n, last = split(n)

...arguments to a recursive call }

return sum_digits_rec(n, digit_sum + last)

