
Higher-Order Functions Announcements

Office Hours: You Should Go!

3

You are not alone!

http://cs61a.org/office-hours.html

Iteration Example

fib

n

pred
curr

k

5

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers
 k = 1 # curr is the kth Fibonacci number
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

5

The next Fibonacci number is the sum of
the current one and its predecessor

12345
Go Bears!

Designing Functions

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

9

def square(x):
 """Return X * X."""

x is a number

square returns a non-
negative real number

square returns the
square of x

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

10

Don’t repeat yourself (DRY): Implement a process just once, but execute it many times

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

>>> round(1.23)
1

(Demo)

Generalization
Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

Finding common structure allows for shared implementation

12

(Demo)

Higher-Order Functions

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

14

(Demo)

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 1 + 8 + 27 + 64 + 125

15

Functions as Return Values

(Demo)

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

A def statement within
another def statement

The name add_three is bound
to a function

Can refer to names in the
enclosing function

Functions defined within other function bodies are bound to names in a local frame

17

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

18

2

3

make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

Lambda Expressions

(Demo)

Lambda Expressions

>>> x = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)
16

An expression: this one
evaluates to a number

Also an expression:
evaluates to a function

that returns the value of "x * x"
with formal parameter x

A function

Lambda expressions are not common in Python, but important in general

Important: No "return" keyword!

Must be a single expression

20

Lambda expressions in Python cannot contain statements at all!

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name, which shows up in
environment diagrams but doesn't affect execution (unless the function is printed).

The Greek
letter lambda

21

Return

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

23

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):
 """Print the final digits of N in reverse order until D is found.

 >>> end(34567, 5)
 7
 6
 5
 """
 while n > 0:
 last, n = n % 10, n // 10
 print(last)
 if d == last:
 return None (Demo)

Control

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

25

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

This function
doesn't exist

def if_(c, t, f):
 if c:
 return t
 else:
 return f

"if" header
expression

"if"
suite

"else"
suite

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the
operand subexpressions

2. Apply the function that is the
value of the operator
to the arguments that are the
values of the operands

(Demo)

Control Expressions

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <left>.

2. If the result is a true value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

27

(Demo)

Conditional Expressions

A conditional expression has the form

<consequent> if <predicate> else <alternative>

Evaluation rule:

1. Evaluate the <predicate> expression.

2. If it's a true value, the value of the whole expression is the value of the <consequent>.

3. Otherwise, the value of the whole expression is the value of the <alternative>.

28

>>> x = 0
>>> abs(1/x if x != 0 else 0)
0

