CS 61A Final Exam Fall 2020 Study Guide — Page 1

Exceptions are raised with a raise statement.
raise <expr>

<expr> must evaluate to a subclass of BaseException or an instance of one.

try: >>> try:
<try suite> x = 1/0
except <exception class> as <name>: except ZeroDivisionError as e:
<except suite> print(‘handling a', type(e))
X =0
The <try suite> is executed first.
If, during the course of executing the |handling a <class
<try suite>, an exception is raised >>> X
that is not handled otherwise, and 0

'ZeroDivisionError'>

If the class of the exception inherits from <exception class>, then
The <except suite> is executed, with <name> bound to the exception.

(define size 5) ; => size

(*2size) ;== 10

(if (> size 0) size (- size)) ; => 5

(cond ((> size 0) size) ((= size 0) 0) (else (- size))) ; => 5
((lambda (x y) (+ x y size)) size (+12)) ; => 13

(let ((a size) (b (+12)) (*2ab)),=> 30
(map (lambda (x) (+ x size)) (quote (2 3 4))) ; => (78 9)
(filter odd? (quote (2 3 4))) ; => (3)

(list (cons 1 nil) size 'size) ; => ((1) 5 size)
(list (equal? 1 2) (null? nil) (= 3 4) (eq? 5 5))
(list (or #f #t) (or) (or12)) ; => (#1#1)
(list (and #f #t) (and) (and 1 2)) ; => (#f #t 2)
(append '(12)'(34)) ,=> (1234)

(not (>12) ;== #

(begin (define x (+ size 1)) (*x 2)) ; => 12
,size) ,(* 3 4)) ; => (+size (-5) 12)

c=> (HH A

“(+ size (-

The built-in Scheme list data structure can represent combinations

scm> (list 'quotient 10 2) scm> (eval (list 'quotient 10 2))
(quotient 10 2) 5

There are two ways to quote an expression

‘(ab) =
“(ab) =

(a b)
(a b)

Quote:
Quasiquote:

They are different because parts of a quasiquoted expression can be
unquoted with ,

(define b 4)
‘(a ,(+b1)) =>
(a ,(+b1) =

Quote:
Quasiquote:

(a (unquote (+ b 1))
(a 5)

Quasiquotation is particularly convenient for generating Scheme
expressions:

(define (make-add-procedure n) *(lambda (d) (+ d ,n)))
(make-add-procedure 2) => (lambda (d) (+ d 2))

;; Return a copy of s reversed.
(define (reverse s)
(define (iter sr)
(if (null? s) r
(iter (cdr s)
(cons (car s) r))))
(iter s nil))

5 Apply fn to each element of s.
(define (map fn s)
(define (map-reverse s m)
(if (null? s) m
(map-reverse
(cdr s)
(cons (fn (car s)) m))))
(reverse (map-reverse s nil)))

; Sum the squares of even numbers less than 10, starting with 2
; x =2

; total =0

; while x < 10:

; total = total + x * x
; X =x+ 2
; RESULT: 2 * 2 + 4 * 4 + 6 * 6 +8 * 8 = 120

(begin
(define (f x total)
(if (< x 10)
(f (+ x 2) (+ total (* x x)))
total))
(£ 2 0))

Sum the numbers whose squares are less than 50, starting with 1
x =1
total = 0
while x * x < 50:
total = total + x
x=x+1
RESULT: 1 + 2 + 3 + 4 +5 + 6 + 7 = 28

(begin
(define (f x total)
(if (< (* x x) 50)
(f (+ x 1) (+ total x))
total))
(£ 10))

(define
; (eval
; (eval
" (begin
(define (f x total)
(if ,while-condition
(f ,update-x (+ total ,add-to-total))
total))
(f ,starting-x 0)))

(sum-while starting-x while-condition add-to-total update-x)
(sum-while 2 (< x 10) (* X X) "(+ x 2))) => 120
(sum-while 1 (< (* x x) 50) 'x "(+ x 1))) => 28

_[A table has columns and rows]

Latitude Longitude Name A column
has a
,,,,,,,,,,,,,,,, 38 1220 Berkeley . name and
42 71 Cambridge a type
""""" /\4593

(A row has a value for each column))

SELECT !
SELECT [columns] FROM [table] WHERE [condition] ORDER BY [order];
CREATE TABLE parents AS

SELECT "abraham" AS parent, "barack" AS child UNION LLLLT]
SELECT "abraham" , "clinton" UNION H E -
SELECT "delano" , "herbert" UNION .
SELECT "fillmore" , "abraham" UNION l
SELECT "fillmore" , "delano" UNION

SELECT "fillmore" , "grover" UNION

SELECT "eisenhower" , "fillmore";

CREATE TABLE dogs AS

SELECT "abraham" AS name, "long" AS fur UNION
SELECT "barack" , "short" UNION
SELECT "clinton" , "long" UNION
SELECT "delano" , "long" UNION
SELECT "eisenhower" , "short" UNION
SELECT "fillmore" , "curly" UNION
SELECT "grover" , '"short" UNION
SELECT "herbert" , "curly"; First Second
SELECT a.child AS first, b.child AS second Earffk ;"Tm"
FROM parents AS a, parents AS b abraham elano
WHERE a.parent = b.parent AND a.child < b.child; | abraham grover
delano grover

The number of groups is the number of unique values of an expression
A having clause filters the set of groups that are aggregated
select weight/legs, count(x) from animals

group by weight/legs : :
having count (%)>1; kind legs weight
n ight/legs=5 dog 4 20
wﬁ;g:u count(*) Lt weight/legs
+7 , weight/legs=2 cat 4 10
5 2 { P
‘)’:_'_,— weight/legs=2 ferret 4 10
.
2 2 ‘. weight/legs=3 parrot 2 6
.
N weight/legs=5 penguin 2 10
weight/1egs=6000 | t-rex 2 12000

Optional content removed

CS 61A Final Exam Fall 2020 Study Guide — Page 2 A basic interpreter has two parts: a parser and an evaluator.

scheme_reader.py scalc.py
Scheme programs consist of expressions, which can be:

e Primitive expressions: 2. 3.3, true + quotient . .
e Combinations: (quotient 10 2). (not true) lines Parser expression Evaluator value
Numbers are self-evaluating; symbols are bound to values.
Call expressions have an operator and @ or more operands.

. . X X X X (+22) Pair('+', Pair(2, Pair(2, nil))) 4
A combination that is not a call expression is a special form:
« If expression: (if <predicate> <consequent> <alternative>)
e Binding names: (define <name> <expression>) T+ 1 Pair('x', Pair(Pair('+', ...)))
e New procedures: (define (<name> <formal parameters>) <body>) ' (- 23)" printed as 4
. . . (x 4 5.6))"
> (define pi 3.14) > (define (abs x) 10" Gl =23 (456 10
> (x pi 2) (if (< x 0)
6.28 (= x) :lgize;:rmlng A number or a Pair with an A number
X)) : operator as its first element
expression
> (abs -3)
3
Lambda expressions evaluate to anonymous procedures. A Scheme list is written as elements in parentheses:
(lambda (<formal-parameters>) <body>)
Two equivalent expressions: A L
(define (plus4 x) (+ x 4)) Each <element> can be a combination or atom (primitive).

(define plus4 (lambda (x) (+ x 4)))
An operator can be a combination too:
((lambda (x y z) (+ x y (square z))) 1 2 3)

(+ (x 3 (+ (x24) (+35))) (+ (-107) 6))

The task of parsing a language involves coercing a string
representation of an expression to the expression itself.
Parsers must validate that expressions are well-formed.

In the late 1950s, computer scientists used confusing names. A Parser takes a sequence of lines and returns an expression.

« cons: Two-argument procedure that creates a pair
e car: Procedure that returns the first element of a pair

Lexical

e cdr: Procedure that returns the second element of a pair . Tokens Syntactllc Expression

e nil: The empty list analysis analysis

They also used a non-obvious notation for linked lists.

* A (linked) Scheme list is a pair in which the second element is 4,1 Pair('+', Pair(1, ...))
nil or a Scheme list. -, 23, ') printed as

« Scheme lists are written as space-separated combinations. w4 6 ')

« A dotted list has an arbitrary value for the second element of the 456,00 1) (+1(-23) (x45.6))

last pair. Dotted lists may not be well-formed lists.

> (define x (cons 1 nil)) e Iterative process ¢ Tree-recursive process
S x e Checks for malformed tokens e Balances parentheses
(1) e Determines types of tokens e Returns tree structure
> (car x) ® Processes one line at a time * Processes multiple lines
1
?)(Cd" x) Syntactic analysis identifies the hierarchical structure of an
> (cons 1 (cons 2 (cons 3 (cons 4 nil)))) expression, which may be nested.)
(123 4) Each call to scheme_read consumes the input tokens for exactly
Symbols normally refer to values; how do we refer to symbols? one expression.
> (define a 1) Base case: symbols and numbers
> (define b 2) No sign of “a” and “b” in Recursive call: scheme_read sub-expressions and combine them
?1(;)15" ab) the resulting value
Quotation is used to refer to symbols directly in Lisp. Base cases: Eval Ilf‘etﬁzr;g:;:
> (list 'a 'b) e Primitive values (numbers) .
interpreter
(a b) Symbols are now values e Look up values bound to symbols
> (list 'a b) Recursive calls: Creates a new
(a 2) + Eval(operator, operands) of call expressions e”!i;g"g‘eﬂseifm
Quotation can also be applied to combinations to form lists. * Apply(procedure, arguments) s anee preseine
> (car '(a b c)) * Eval(sub-expressions) of special forms is applied
a
> (cdr '(a b c))
i~ e st
(car (cons 1 nil)) 1 for name e Built-in primitive procedures

(cdr (cons 1 nil))

() Recursive calls:
(cdr (cons 1 (cons 2 nil))) (2) Lookup

e Eval(body) of user-defined procedures

class Pair:
"""A pair has two instance attributes:

To apply a user—defined procedure, create a new frame in which
first and rest.

formal parameters are bound to argument values, whose parent
is the env of the procedure, then evaluate the body of the

est must be a Pai il. . . . N
L “ iror nt procedure in the environment that starts with this new frame.

def _ init_ (self, first, rest): (define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))
self.first first
self.rest = rest (f (list 1 2))
>>> s = Pair(l, Pair(2, Pair(3, nil))) g: Global frame
>>> s

First First f e« ™ LambdaProcedure instance [parent=g]

first [rest
Pair(1l, Pair(2, Pair(3, nil))) i

rest rest
+ + 3 |nil .
>>> print(s)
S [parent=g) s || 1| 2 2| A2nt

The Calculator language has primitive expressions and call expressions [parent=g] s
Calculator Expression Expression Tree
(x 3
E; é g)s)) * 3 How to Design Functions:
1) Identify the information that must be represented and how it is
+ 4 5 x 6 7 8 represented. Illustrate with examples.
Representation as Pairs 2) State what kind of data the desired function consumes and produces.
Formulate a concise answer to the question what the function computes.
‘“;L ‘ :—F‘ 3 ‘+“ -‘—F“Tl ‘nll‘ 3) Work through examples that illustrate the function’s purpose.
L2 o — 4) Outline the function as a template.
* +‘ 6 + 7 +‘ 8 |nil 5) Fill in the gaps in the function template. Exploit the purpose
statement and the examples.

‘“l ‘.‘—F“[‘.‘—F“s ‘nl‘l‘ 6) Convert examples into tests and ensure that the function passes them.

